Jiangyin Donghao Stainless Steel Tubing  
E-mail: sales@tubingchina.com
  Portugal | Japanese | Русский | España | Deutsch | English | Chinese Sitemap | Contact US

    Products

Material

UNS N04400 Monel 400 Nickel Alloy Seamless Tubes





Monel 400 W-Nr. 2.4360 Nickel Alloy is a Nickel-Copper alloy that is resistant to seawater and steam at high temperatur as well as to salt and caustic solutions. Alloy 400 is a solid solution alloy that can only be hardened by cold working. This nickel alloy exhibits characteristics like good corrosion resistance, good weldability and high strength. A low corrosion rate in rapidly flowing brackish or seawater combined with excellent resistance to stress-corrosion cracking in most freshwater, and its resistance to variety of corrosive condition led to its wide use in marine application and other non-oxidizing chloride solutions.

Alloy 400 W-Nr. 2.4360 Nickel Alloy is particularly resistant to hydrochloric acid and hydrofluoric acid when they are de-aerated. As would be expected from its high copper content, alloy 400 is rapidly attacked by nitric acid and ammonia systems. Monel 400 has great mechanical properties at subzero temperatures, can be used in temperatures up to 1000° F, and its melting point is 2370-2460° F. However, alloy 400 is low in strength in the annealed condition so, a variety of tempers may be used to increase the strength.

Alloy 400 2.4360 Nickel Alloy is a nickel-copper alloy with excellent corrosion resistance in a wide variety of media. The alloy is characterized by good general corrosion resistance, good weldability and moderate to high strength. The alloy has been used in a variety of applications. It has excellent resistance to rapidly flowing brackish water or seawater. It is particularly resistant to hydrochloric acid and hydrofluoric acids when they are de-aerated. The alloy is slightly magnetic at room temperature. The alloy is widely used in the chemical, oil and marine industries.

Alloy 400 W-Nr. 2.4360 Nickel Alloy is widely used in many fields, especially marine and chemical processing. Typical applications are valves and pumps; pump and propeller shafts; marine fixtures and fasteners; electrical and electronic components; springs; chemical processing equipment; gasoline and fresh water tanks; crude petroleum stills, process vessels and piping; boiler feed water heaters and other heat exchangers; and deaerating heaters.

Characteristics

  • =Corrosion resistance in an extensive range of marine and chemical environments. From pure water to nonoxidizing mineral acids, salts and alkalis.
  • This alloy is more resistant to nickel under reducing conditions and more resistant than copper under oxidizing conditions, it does show however better resistance to reducing media than oxidizing.
  • Good mechanical properties from subzero temperatures up to about 480C.
  • Good resistance to sulfuric and hydrofluoric acid. Aeration however will result in increased corrosion rates. May be used to handle hydrochloric acid, but the presence of oxidizing salts will greatly accelerate corrosive attack.
  • Resistance to neutral, alkaline and acid salts is shown, but poor resistance is found with oxidizing acid salts such as ferric chloride.
  • Excellent resistance to chloride ion stress corrosion cracking.

Applications

  • Feed water and steam generator tubing.
  • Brine heaters, sea water scrubbers in tanker inert gas systems.
  • Sulfuric acid and hydrofluoric acid alkylation plants.
  • Pickling bat heating coils.
  • Heat exchanger in a variety of industries.
  • Transfer piping from oil refinery crude columns.
  • Plant for the refining of uranium and isotope separation in the production of nuclear fuel.
  • Pumps and valves used in the manufacture of perchlorethylene, chlorinated plastics.
  • Monoethanolamine (MEA) reboiling tube.
  • Cladding for the upper areas of oil refinery crude columns.
  • Propeller and pump shafts.

ASTM Specifications

Pipe Smls Pipe Welded Tube Smls Tube Welded Sheet/Plate Bar Forging Fitting Wire
B165 B725 B163   B127 B164 B564 B366  

ASME SB163 Standard Specification for Seamless Nickel and Nickel Alloy Condenser and Heat-Exchanger Tubes

ASME SB165 Standard Specification for Nickel-Copper Alloy (UNS N04400)* Seamless Pipe and Tube

ASME SB167 Standard Specification for Nickel-Chromium-Iron Alloys, Nickel-Chromium-Cobalt-Molybdenum Alloy (UNS N06617),and Nickel-Iron-Chromium-Tungsten Alloy (UNS N06674) Seamless Pipe and Tube

ASME SB407 Standard Specification for Nickel-Iron-Chromium Alloy Seamless Pipe and Tube

ASME SB423 Standard Specification for Nickel-Iron-Chromium-Molybdenum-Copper Alloy (UNS N08825, N08221, and N06845) Seamless Pipe and Tube

ASME SB444 Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloys (UNS N06625 and UNS N06852) and Nickel-Chromium-Molybdenum-Silicon Alloy (UNS N06219) Pipe and Tube

ASME SB622 Standard Specification for Seamless Nickel and Nickel-Cobalt Alloy Pipe and Tube

ASME SB668 UNS N08028 Seamless Pipe and Tube

ASME SB690 Standard Specification for Iron-Nickel-Chromium-Molybdenum Alloys (UNS N08366 and UNS N08367) Seamless Pipe and Tube

ASME SB729 Standard Specification for seamless UNS N08020, UNS N08026, and UNS N08024 nickel alloy pipe and Tube

DIN 17743, 17750 – 17754
Werkstoff Nr. 2.4360,
2.4361
VdTÜV 263
QQ-N 281
NACE MR-01-75

Chemical Composition, %

C Mn S Si Ni Cu Fe
.30 max 2.00 max .024 max .50 max 63.0 min 28.0-34.0 2.50 max

Corrosion Resistant Monel 400

Alloy 400 is virtually immune to chloride ion stress corrosion cracking in typical environments. Generally, its corrosion resistance is very good in reducing environments, but poor in oxidizing conditions. It is not useful in oxidizing acids, such as nitric acid and nitrous. Nevertheless, it is resistant to most alkalis, salts, waters, food products, organic substances and atmospheric conditions at normal and elevated temperatures.

This nickel alloy is attacked in sulfur-bearing gases above approximately 700° F and molten sulfur attacks the alloy at temperatures over approximately 500° F.

Monel 400 offers about the same corrosion resistance as nickel but with higher maximum working pressure and temperatures and at a lower cost due to its superior ability to be machined.

Fabrication with Monel 400

Alloy 400 can easily be welded by gas-tungsten arc, gas metal arc or shielded metal arc processes using appropriate filler metals. There is no need for post weld heat treatment, however, thorough cleaning after welding is critical for optimum corrosion resistance, otherwise there is the risk of contamination and embrittlement.

Finished fabrications can be produced to a wide range of mechanical properties when proper control of the amount of hot or cold working and the selection of appropriate thermal treatments is done.

Like most other nickel alloys, Monel 400 is typically tough to machine and will work harden. However, excellent results can e obtained if you make the correct choices for tooling and machining.

Mechanical Properties
Typical room temperature Tensile Properties of Annealed Material

Product Form Condition Tensile (ksi) .2% Yield (ksi) Elongation (%) Hardness (HRB)
Rod & Bar Annealed 75-90 25-50 60-35 60-80
Rod & Bar Cold-Drawn Stress Relieved 84-120 55-100 40-22 85-20 HRC
Plate Annealed 70-85 28-50 50-35 60-76
Sheet Annealed 70-85 30-45 45-35 65-80
Tube & Pipe Seamless Annealed 70-85 25-45 50-35 75 max *

*The ranges shown are composites for various product sizes and therefore are not suitable for specification purposes. Hardness values are suitable for specification purposes provided tensile properties are not also specified.

Machinability

Conventional machining techniques used for iron based alloys may be used. This alloy does work-harden during machining and has higher strength and "gumminess" not typical of steels. Heavy duty machining equipment and tooling should be used to minimize chatter or work-hardening of the alloy ahead of the cutting. Most any commercial coolant may be used in the machining operations. Water-base coolants are preferred for high speed operations such as turning, grinding, or milling. Heavy lubricants work best for drilling, tapping, broaching or boring.

Turning: Carbide tools are recommended for turning with a continuous cut. High-speed steel tooling should be used for interrupted cuts and for smooth finishing to close tolerance. Tools should have a positive rake angle.

Cutting speeds and feeds are in the following ranges: For High-Speed Steel Tools For Carbide Tooling Depth Surface Feed Depth Surface Feed of cut speed in inches of cut speed in inches inches feet/min. per rev. inches feet/min. per rev. 0.250" 60-70 0.030 0.250" 250-300 0.020 0.050" 90-100 0.010 0.050" 300-350 0.008

Drilling: Steady feed rates must be used to avoid work hardening due to dwelling of the drill on the metal. Rigid set-ups are essential with as short a stub drill as feasible. Conventional high-speed steel drills work well. Feeds vary from 0.0007 inch per rev. for holes of less than 1/16" diameter, 0.003 inch per rev. for 1/4" dia., to 0.010 inch per rev. for holes of 7/8"diameter. Surface speeds of 45-55 feet/minute, are best for drilling.

Milling: To obtain good accuracy and a smooth finish it is essential to have rigid machines and fixtures and sharp cutting tools. High-speed steel cutters such as M-2 or M-10 work best with cutting speeds of 60 to 80 feet per minute and feed of 0.005"-0.008" per cutting tooth. Grinding: The alloy should be wet ground and aluminum oxide wheels or belts are preferred.

Forming

This alloy has good ductility and may be readily formed by all conventional methods. Because the alloy is stronger than regular steel it requires more powerful equipment to accomplish forming. Heavy-duty lubricants should be used during cold forming. It is essential to thoroughly clean the part of all traces of lubricant after forming as embrittlement of the alloy may occur at high temperatures if lubricant is left on.

Welding

The commonly used welding methods work well with this alloy. Matching alloy filler metal should be used. If matching alloy is not available then the nearest alloy richer in the essential chemistry (Ni, Co, Cr, Mo) should be used. All weld beads should be slightly convex. It is not necessary to use preheating. Surfaces to be welded must be clean and free from oil, paint or crayon marking. The cleaned area should extend at least 2" beyond either side of a welded joint.

Gas-Tungsten Arc Welding: DC straight polarity (electrode negative) is recommended. Keep as short an arc length as possible and use care to keep the hot end of filler metal always within the protective atmosphere.

Shielded Metal-Arc Welding: Electrodes should be kept in dry storage and if moisture has been picked up the electrodes should be baked at 600 F for one hour to insure dryness. Current settings vary from 50 amps for material 0.062" thick up to 190 amps for material of 1/2" and thicker. It is best to weave the electrode slightly as this alloy weld metal does not tend to spread. Cleaning of slag is done with a wire brush (hand or powered). Complete removal of all slag is very important before successive weld passes and also after final welding.

Gas Metal-Arc Welding: Reverse-polarity DC should be used and best results are obtained with the welding gun at 90 degrees to the joint. For Short-Circuiting-Transfer GMAW a typical voltage is 19-25 with a current of 100-175 amps and a wire feed of 225-400 inches per minute. For Spray-Transfer GMAW voltage of 26 to 33 and current in the range of 200-350 amps with wire feed rate of 200-500 inches per minute, depending on filler wire diameter.

Submerged-Arc Welding: Matching filler metal, the same as for GMAW, should be used. DC current with either reverse or straight polarity may be used. Convex weld beads are preferred.

Cold Working

Cold forming may be done using standard tooling although plain carbon tool steels are not recommended for forming as they tend to produce galling. Soft die materials (bronze, zinc alloys, etc.) minimize galling and produce good finishes, but die life is somewhat short. For long production runs the alloy tool steels ( D-2, D-3) and high-speed steels (T-1, M-2, M-10) give good results especially if hard chromium plated to reduce galling. Tooling should be such as to allow for liberal clearances and radii. Heavy duty lubricants should be used to minimize galling in all forming operations. Bending of sheet or plate through 180 degrees is generally limited to a bend radius of 1 T for material up to 1/8" thick and 2 T for material thicker than 1/8".

Annealing

Annealing may be done at 1700 F. A stress-relief anneal may be done at 1050 F for 1 to 2 hours, followed by slow cooling.

Hardening

Hardens due to cold work only.

Physical Properties

Density (g/cm3.)

8.8

Specific Gravity (g/cm3.)

8.8

Specific Heat (Btu/lb/Deg F - [32-212 Deg F])

0.105

Electrical Resistivity (microhm-cm (at 68 Deg F))

307

Melting Point (Deg F)

2425

Poissons Ratio

0.32

Thermal Conductivity

167

Mean Coeff Thermal Expansion

7.7

Modulus of Elasticity Tension

26

Mechanical Properties

Form

Plate

Condition

Test Specimen Annealed

Temper

70

Tensile Strength

83

Yield Strength

39

Elongation

42

Rockwell

B68



Export ASME SB163 UNS N04400 Nickel Alloys Seamless Tubes
304 | 304L | 304H | 305 | 316/316L | 316Ti | 317L | 321/321H | 309S | 310S | 347/347H | S32101 | S32205/S31803 | S32304 | S32750 | S32760 | 904L | 405 | 409 | 410 | 410S | 416 | 420 | 430 | 630 | 660 | 254SMO | 253MA | 353MA
Incoloy: Incoloy 800 | Incoloy 800H | Incoloy 800HT | Incoloy 825 | Incoloy 901 | Incoloy 925 | Incoloy 926
Inconel: Inconel 600 | Inconel 601 | Inconel 625 | Inconel 706 | Inconel 718 | Inconel X-750
Hastelloy: Hastelloy B | Hastelloy B-2 | Hastelloy B-3 | Hastelloy C-4 | Hastelloy C-22 | Hastelloy C-276 | Hastelloy X | Hastelloy G | Hastelloy G3
Nimonic: Nimonic 75 | Nimonic 80A | Nimonic 90
Monel: Alloy 20 | Nickel 200 | Nickel 201 | Monel 400 | Monel 401 | Monel R 405 | Monel K 500
Other: A286 | 17-4PH
UNS Number N1 Nickel Alloy | UNS Number N2 Nickel Alloy | UNS Number N3 Nickel Alloy

Share TubingChina.com All Rights Reserved

Directory | Standard | Heat | Heat Exchanger | Temperature | Pressure | Corrosion | Hardness | Surface | Properties | Selection of Stainless Steel | Contact US

Useful Tools:

Metals weight Calculator
Stainless Steel Weight Calculator
Nickel Alloy Tubing Weight Calculator
Sheet Plate Weight Calculator
Hardness Values Conversion Calculator
Hardness Conversion Calculator
Length Weight Temperature Volume Pressure Conversion
Pipe Working Pressure Calculation
Pressure Conversion Converter Calculator
Gauge Sizes - Wire Sheet Plate Tube
Stainless Steel Pipe Schdule
Nominal Pipe Size
ANSI Pipe Chart

Stainless Steel Tubing and Pipe:

Heat Exchanger Tubes
U Bend Stainless Steel Tubing
Duplex Stainless Steel Pipe
Boiler Tubes, Condenser Tubes
Stainless Steel Seamless Pipes Corrugated Seamless Stainless Steel Pipe Tube
Cold Drawn Bright Annealing Stainless Steel Tubes
Heat resistant Stainless Steel Tubes
Welded Stainless Steel Pipe
Corrosion Resistant Stainless Steel Tube
Corrosion Resistance of Stainless Steel Tubes
Nickel Alloy Seamless Tubes:

UNS N08020 2.4600 Nickel Alloy 20 Seamless Tubing
UNS N02200 2.4066 200 Nickel Alloy Seamless Tubing
UNS N04400 400 Nickel Alloy 2.4360 Nickel Alloy Tubing
UNS N08800 800 Nickel Alloy Seamless Tubes
UNS N08810 800H UNS N08810 Nickel Alloy Seamless Tubes
UNS N08811 800HT Nickel Alloy Seamless Tubes
UNS N08825 825 2.4858 Nickel Alloy Seamless Tubes
UNS N06600 600 2.4816 Nickel Alloy Seamless Tubes
UNS N06625 625 2.4856 Nickel Alloy Seamless Tubes
UNS N10276 C-276 2.4819 Nickel Alloy Seamless Tubing
Why Choose US?

Production Equipment
Testing Equipement
Qualification and Certificates
Quality Control Systerm
Service Range and Procedure

Contact US:
sales@tubingchina.com