Zhejiang Guanyu Stainless Steel Tube Co., Ltd  
  Directory | Useful Tool | Sitemap | Contact US | Home

         

Properties

Drawing Drawn






Drawing is a metalworking process which uses tensile forces to stretch metals. It is broken up into two types: sheet metal drawing and wire, bar, and tube drawing. The specific definition for sheet metal drawing is that it involves plastic deformation over a curved axis. For wire, bar, and, tube drawing the starting stock is drawn through a die to reduce its diameter and increase its length. Drawing is usually done at room temperature, thus classified a cold working process, however it may be performed at elevated temperatures to hot work large wires, rods or hollow sections in order to reduce forces.

Sheet metal

The success of forming is in relation to two things, the flow and stretch of material. As a die forms a shape from a flat sheet of metal, there is a need for the material to move into the shape of the die. The flow of material is controlled through pressure applied to the blank and lubrication applied to the die or the blank. If the form moves too easily, wrinkles will occur in the part.

To correct this, more pressure or less lubrication is applied to the blank to limit the flow of material and cause the material to stretch or thin. If too much pressure is applied, the part will become too thin and break. Drawing metal is the science of finding the correct balance between wrinkles and breaking to achieve a successful part.

Deep drawing

Drawing can also be used to pull metal over a die (male mold) to create a specific shape. For example, stainless steel kitchen sinks are formed by drawing the stainless steel sheet metal stock over a form (the die) in the shape of the sink. Beverage cans are formed by drawing aluminium stock over can-shaped dies. By comparison, hydroforming forces metal into a female mold using pressure.



Bar, tube & wire

Bar, tube, and wire drawing all work upon the same principle: the starting stock drawn through a die to reduce the diameter and increase the length. Usually the die is mounted on a draw bench. The end of the workpiece is reduced or pointed to get the end through the die. The end is then placed in grips and the rest of the workpiece is pulled through the die. Steels, copper alloys, and aluminium alloys are common materials that are drawn.

Drawing can also be used to produce a cold formed shaped cross-section. Cold drawn cross-sections are more precise and have a better surface finish than hot extruded parts. Inexpensive materials can be used instead of expensive alloys for strength requirements, due to work hardening.

Bar drawing

Bars or rods that are drawn cannot be coiled therefore straight-pull draw benches are used. Chain drives are used to draw workpieces up to 30 m (98 ft). Hydraulic cylinders are used for shorter length workpieces.

The reduction in area is usually restricted to 20 to 50%, because greater reductions would exceed the tensile strength of the material, depending on its ductility. To achieved a certain size or shape multiple passes through progressively smaller dies or intermediate anneals may be required.

Tube drawing

Tube drawing is very similar to bar drawing, except the beginning stock is a tube. It used to decrease the diameter, improve surface finish and improve dimensional accuracy. A mandrel may or may not be used depending on the specific process used.

Wire drawing

This technique has long been used to produce flexible metal wire by drawing the material through a series of dies of decreasing size. These dies are manufactured from a number of materials, the most common being tungsten carbide and diamond.

Plastic drawing

Plastics drawing, sometimes referred to as cold drawing, is the same process as used on metal bars, but applied to plastics.

Cold drawing is primarily used in manufacturing plastic fibers. The process was discovered by Julian Hill in 1930 while trying to make fibers from an early polyester. It is performed after the material has been "spun" into filaments; by extruding the polymer melt through pores of a spinneret. During this process, the individual polymer chains tend to somewhat align because of viscous flow. These filaments still have an amorphous structure, so they are drawn to align the fibers further, thus increasing crystallinity, tensile strength and stiffness. This is done on a draw twister machine.

For nylon, the fiber is stretched four times its spun length. The crystals formed during drawing are held together by hydrogen bonds between the amide hydrogens of one chain and the carbonyl oxygens of another chain.



TubingChina.com All Rights Reserved

Directory | Standard | Heat | Heat Exchanger | Temperature | Pressure | Corrosion | Hardness | Surface | Properties | Select Stainless Steel | Contact US

Useful Tools:

Stainless Steel Weight Calculator
Metals Weight Calculator
Nickel Alloy Weight Calculator
Copper Brass Alloy Weight Calculator
Copper Brass Alloy Sheet Plate Weight Calculator
Sheet Plate Weight Calculator
Hardness Conversion Calculator
Hardness Conversion Chart
Rockwell Brinell Vickers Shore Hardness Conversion Chart
Conversion Calculator
Length Weight Temperature Volume Pressure Calculater
Pipe Working Pressure Calculator
Pressure Conversion Converter
Round Bar Size Calculator
Gauge Sizes
Sheet Metal Gauge
Pipe Schedule
Nominal Pipe Size
ANSI Pipe Chart
Inch to mm Chart
Stainless Steel Pipe Sizes
Stainless Steel Tubing Sizes Chart
Stainless Steel L H Grade
Stainless Steel Density
Conversion of Stainless Steel
Nickel Alloy Grades Comparison Material Grade Chart Carbon Steel
Structural Steel Comparison Chart



Main Products:

BA Tube | AP Tube
Condenser Tubes Tubing
Stainless Steel Reheater Tube Superheater Tubes
Stainless Steel U bend Tube
Nickel Alloy U bend Tubes
Copper Alloy U Bend Tubes
Heat Exchanger Tube
Super Duplex Pipe
Nickel Alloy Tube
Brass Alloy Tubing
Copper Nickel Alloys Tubes
Stainless Steel Hollow Tube
Stainless Steel Oval Tubing
Stainless Steel Square Tubing
Stainless Steel Rectangular Tubing
Stainless Steel Capillary Tube
Duplex Stainless Steel Pipe
Seamless Stainless Steel Tubing
Corrugated Stainless Steel Tubing
Stainless Steel Twisted Tube
Polishing Stainless Steel Tubing
Stainless Steel Aircraft Tube
Stainless Steel Hydraulic Tubing
Stainless Steel Instrumentation Tubing
Stainless Steel Angle Iron Bar
Stainless Steel Mechanical Tube
Bright Annealing Stainless Tube
Heat resistant Stainless Steel
Stainless Steel Welded Pipe
Extruded Serrated Finned Tubes Integral Finned Tubes / Extruded Aluminum Finned Tubes
Brass Alloys Copper Nickel Alloy Integral Low Finned Tubes
HFW High Frequency Welded Helical Spiral Serrated Finned Tubes
Corrosion Resistant Stainless Steel
Corrosion Resistance Stainless Steel

Stainless Steel Tubing Pipe

304 Stainless Steel Pipe
304L Stainless Steel Pipe
304H Stainless Steel Pipe
304/304L Stainless Steel Tubing
309S Stainless Steel Pipe
310S Stainless Steel Pipe
316L Stainless Steel Tubing
316Ti Stainless Steel Tube
317L Stainless Steel Pipe
321 321H Stainless Steel
347 347H Stainless Steel
904L N08094 Seamless Tubes
17-4 PH 630 UNS S17400 Stainless Steel
253MA S30815 Stainless Steel Tube
S31254 254 SMO Pipe
S31803 Stainless Steel
2205 Duplex Pipe Tubing
S32101 Stainless Steel
S32304 Stainless Steel
2507 Super Duplex Pipe
S32750 Super Duplex Pipe
S32760 Super Duplex Steel
1.4462 Stainless Steel Pipe
ASTM A213 | ASTM A269
ASTM A312 | ASTM A511
ASTM A789 | ASTM A790
ASTM B161 / ASME SB 161 | ASTM B111
EN 10216-5
ASTM A789 ASME SA 789 S31803 S32205 S32101 S32750 S32760 S32304 S31500 S31260 Seamless Tubes
EN 10216-5 1.4462 1.4362 1.4162 1.4410 1.4501 Seamless Tubes
Nickel Alloy Tubing:

UNS N08020 Alloy 20 Tubing
UNS N02200 Alloy 200 Tube
UNS N02201 Alloy 201 Pipe
UNS N04400 Monel 400 Tubing
N06600 Inconel 600 Tube
N06601 Inconel 601 Tubing
N06625 Inconel 625 Tubes
N08800 Incoloy 800 Tube
N08810 Incoloy 800H Tube
N08811 Incoloy 800HT Tubing
UNS N08825 Incoloy 825 Pipe
ASTM B622 N10276 C276 Tubing
ASTM B622 N06022 Hastelloy C-22 Alloy Tubes
C28000 Brass Seamless Tubes C44300 Brass Seamless Tubes
C68700 Brass Seamless Tubes
C70600 Copper Nickel Tubes
C71500 Copper Nickel Tubes
DIN 2391 Seamless Precision Steel Tubes
EN 10305-1 E215 E235 E355 Seamless Precision Steel Tube Tubing Tubes
DIN 2393 St28 St34.2 St37.2 St44.2 St52.3 Welded Precision Steel Tubes
EN 10305-2 E195 E235 E355 Welded Cold Drawn Precision Steel Tube