Zhejiang Guanyu Stainless Steel Tube Co., Ltd  
  Directory | Useful Tool | Sitemap | Contact US | Home

         

Fabrication

Hot Working




Hot Rolling - Hot Rolling Process | Hot Rolling Application | Types of Hot Rolling Mill | Hot Rolled Steel Tube | History

In materials science, hot working efers to processes where metals are plastically deformed above their recrystallization temperature. Being above the recrystallization temperature allows the material to recrystallize during deformation. This is important because recrystallization keeps the materials from strain hardening, which ultimately keeps the yield strength and hardness low and ductility high.This contrasts with cold working.

Temperature

The lower limit of the hot working temperature is determined by its recrystallization temperature. As a guideline, the lower limit of the hot working temperature of a material is 0.6 times its melting temperature (on an absolute temperature scale). The upper limit for hot working is determined by various factors, such as: excessive oxidations, grain growth, or an undesirable phase transformation. In practice materials are usually heated to the upper limit first to keep forming forces as low as possible and to maximize the amount of time available to hot work the workpiece.

The most important aspect of any hot working process is controlling the temperature of the workpiece. Of 90% of the energy imparted into the workpiece is converted into heat. Therefore, if the deformation process is quick enough the temperature of the workpiece should rise, however, this does not usually happen in practice. Most of the heat is lost through the surface of the workpiece into the cooler tooling.

This causes temperature gradients in the workpiece, usually due to non-uniform cross-sections where the thinner sections are cooler than the thicker sections. Ultimately, this can lead to cracking in the cooler, less ductile surfaces. One way to minimize the problem is to heat the tooling. The hotter the tooling the less heat lost to it, but as the tooling temperature rises, the tool life decreases. Therefore the tooling temperature must be compromised; commonly, hot working tooling is heated to 500–850 °F (325–450 °C).

Lower limit hot working temperature for various metals
Metal Temperature
Tin Room temperature
Steel 2,000 °F (1,090 °C)
Tungsten 4,000 °F (2,200 °C)


Advantages & disadvantages

The advantages are:

  • Decrease in yield strength, therefore it is easier to work and uses less energy or force
  • Increase in ductility
  • Elevated temperatures increase diffusion which can remove or reduce chemical inhomogeneities
  • Pores may reduce in size or close completely during deformation
  • In steel, the weak, ductile, face-centered-cubic austenite microstructure is deformed instead of the strong body-centered-cubic ferrite microstructure found at lower temperatures

Usually the initial workpiece that is hot worked was originally cast. The microstructure of cast items does not optimize the engineering properties, from a microstructure standpoint. Hot working improve the engineering properties of the workpiece because it replaces the microstructure with one that has fine spherical shaped grains. These grains increase the strength, ductility, and toughness of the material.

The engineering properties can also be improved by reorienting the inclusions (impurities). In the cast state the inclusions are randomly oriented, which, when intersecting the surface, can be a propagation point for cracks. When the material is hot worked the inclusions tend to flow with the contour of the surface, creating stringers. As a whole the strings create a flow structure, where the properties areanisotropic (different based on direction). With the stringers oriented parallel to the surface it strengthens the workpiece, especially with respect to fracturing. The stringers act as "crack-arrestors" because the crack will want to propagate through the stringer and not along it.

The disadvantages are:

  • Undesirable reactions between the metal and the surrounding atmosphere (scaling or rapid oxidation of the workpiece)
  • Less precise tolerances due to thermal contraction and warping from uneven cooling
  • Grain structure may vary throughout the metal for various reasons
  • Requires a heating unit of some kind such as a gas or diesel furnace or an induction heater, which can be very expensive

Hot Rolling - Hot Rolling Process | Hot Rolling Application | Types of Hot Rolling Mill | Hot Rolled Steel Tube | History

Cold Rolling - Physical metallurgy | Degree of cold work | Cold Rolling Stainless Steel | Manufacturing Process

Foil rolling | Rolling Mill | Steel Mill | Production methods | Recycling of Steel | Modern Steelmaking | Contemporary Steel


TubingChina.com All Rights Reserved

Directory | Standard | Heat | Heat Exchanger | Temperature | Pressure | Corrosion | Hardness | Surface | Properties | Select Stainless Steel | Contact US

Useful Tools:

Stainless Steel Weight Calculator
Metals Weight Calculator
Nickel Alloy Weight Calculator
Copper Brass Alloy Weight Calculator
Copper Brass Alloy Sheet Plate Weight Calculator
Sheet Plate Weight Calculator
Hardness Conversion Calculator
Hardness Conversion Chart
Rockwell Brinell Vickers Shore Hardness Conversion Chart
Conversion Calculator
Length Weight Temperature Volume Pressure Calculater
Pipe Working Pressure Calculator
Pressure Conversion Converter
Round Bar Size Calculator
Gauge Sizes
Sheet Metal Gauge
Pipe Schedule
Nominal Pipe Size
ANSI Pipe Chart
Inch to mm Chart
Stainless Steel Pipe Sizes
Stainless Steel Tubing Sizes Chart
Stainless Steel L H Grade
Stainless Steel Density
Conversion of Stainless Steel
Nickel Alloy Grades Comparison Material Grade Chart Carbon Steel
Structural Steel Comparison Chart



Main Products:

BA Tube | AP Tube
Condenser Tubes Tubing
Stainless Steel Reheater Tube Superheater Tubes
Stainless Steel U bend Tube
Nickel Alloy U bend Tubes
Copper Alloy U Bend Tubes
Heat Exchanger Tube
Super Duplex Pipe
Nickel Alloy Tube
Brass Alloy Tubing
Copper Nickel Alloys Tubes
Stainless Steel Hollow Tube
Stainless Steel Oval Tubing
Stainless Steel Square Tubing
Stainless Steel Rectangular Tubing
Stainless Steel Capillary Tube
Duplex Stainless Steel Pipe
Seamless Stainless Steel Tubing
Corrugated Stainless Steel Tubing
Stainless Steel Twisted Tube
Polishing Stainless Steel Tubing
Stainless Steel Aircraft Tube
Stainless Steel Hydraulic Tubing
Stainless Steel Instrumentation Tubing
Stainless Steel Angle Iron Bar
Stainless Steel Mechanical Tube
Bright Annealing Stainless Tube
Heat resistant Stainless Steel
Stainless Steel Welded Pipe
Extruded Serrated Finned Tubes Integral Finned Tubes / Extruded Aluminum Finned Tubes
Brass Alloys Copper Nickel Alloy Integral Low Finned Tubes
HFW High Frequency Welded Helical Spiral Serrated Finned Tubes
Corrosion Resistant Stainless Steel
Corrosion Resistance Stainless Steel

Stainless Steel Tubing Pipe

304 Stainless Steel Pipe
304L Stainless Steel Pipe
304H Stainless Steel Pipe
304/304L Stainless Steel Tubing
309S Stainless Steel Pipe
310S Stainless Steel Pipe
316L Stainless Steel Tubing
316Ti Stainless Steel Tube
317L Stainless Steel Pipe
321 321H Stainless Steel
347 347H Stainless Steel
904L N08094 Seamless Tubes
17-4 PH 630 UNS S17400 Stainless Steel
253MA S30815 Stainless Steel Tube
S31254 254 SMO Pipe
S31803 Stainless Steel
2205 Duplex Pipe Tubing
S32101 Stainless Steel
S32304 Stainless Steel
2507 Super Duplex Pipe
S32750 Super Duplex Pipe
S32760 Super Duplex Steel
1.4462 Stainless Steel Pipe
ASTM A213 | ASTM A269
ASTM A312 | ASTM A511
ASTM A789 | ASTM A790
ASTM B161 / ASME SB 161 | ASTM B111
EN 10216-5
ASTM A789 ASME SA 789 S31803 S32205 S32101 S32750 S32760 S32304 S31500 S31260 Seamless Tubes
EN 10216-5 1.4462 1.4362 1.4162 1.4410 1.4501 Seamless Tubes
Nickel Alloy Tubing:

UNS N08020 Alloy 20 Tubing
UNS N02200 Alloy 200 Tube
UNS N02201 Alloy 201 Pipe
UNS N04400 Monel 400 Tubing
N06600 Inconel 600 Tube
N06601 Inconel 601 Tubing
N06625 Inconel 625 Tubes
N08800 Incoloy 800 Tube
N08810 Incoloy 800H Tube
N08811 Incoloy 800HT Tubing
UNS N08825 Incoloy 825 Pipe
ASTM B622 N10276 C276 Tubing
ASTM B622 N06022 Hastelloy C-22 Alloy Tubes
C28000 Brass Seamless Tubes C44300 Brass Seamless Tubes
C68700 Brass Seamless Tubes
C70600 Copper Nickel Tubes
C71500 Copper Nickel Tubes
DIN 2391 Seamless Precision Steel Tubes
EN 10305-1 E215 E235 E355 Seamless Precision Steel Tube Tubing Tubes
DIN 2393 St28 St34.2 St37.2 St44.2 St52.3 Welded Precision Steel Tubes
EN 10305-2 E195 E235 E355 Welded Cold Drawn Precision Steel Tube