Stainless Steel Tubing  
  Portugal | Japanese | Русский | España | Deutsch | English | Chinese Sitemap



Grain size is the average size of the particles in a metal. All metals are made up of tiny crystals fused together. When viewed under a microscope, the boundaries between these crystals can be counted, allowing the grain size to be calculated. Metals with smaller grains tend to be stronger, though large grains can sometimes be useful as well. Testing grain size is thus useful for quality control in the development and production

Grain Size Measurements
Metals, except in a few instances, are crystalline in nature and, except for single crystals, they contain internal boundaries known as grain boundaries. When a new grain is nucleated during processing (as in solidification or annealing after cold working), the atoms within each growing grain are lined up in a specific pattern that depends upon the crystal structure of the metal or alloy. With growth, each grain will eventually impinge on others and form an interface where the atomic orientations are different.

As early as the year 1900, it was well known that most mechanical properties were improved as the size of the grains decreased. A few notable exceptions exist where a coarse grain structure is desired. Alloy composition and processing must be controlled to achieve the desired grain size. Metallographers examine polished cross sections of specimens from appropriate locations to determine the grain size.

Measure Grain Size
The Grain Size Module in IQmaterials utilizes the General Intercept Procedures described in both ASTM and ISO grain size norms. This module offers an intuitive interface and convenient walk-through Wizards that improve the accuracy and throughput of your testing.

Grain Size Measurement Features:

  • Measure the grain size using ASTM or ISO norms
  • Choose from intercept overlays, including: 
    -  Circles
    -  Diagonal lines
    -  Horizontal lines
    -  Vertical lines
  • Set the boundary detection level with the interactive histogram tool
Grain Size Measure
Circular test line pattern is applied for grain boundary counting.

The grain size of a metal or single phase alloy is an estimate of the average grain diameter, usually expressed in millimeters. The metallurgical techniques used to determine grain size are not necessary for this discussion, the major point to remember is that grain size is an important material characteristic. As the average grain size decreases, the metal becomes stronger (more resistant to plastic flow) and as the grain size increases, the opposite effect on strength occurs. In general, for a given alloy and thickness, ductility increases with grain size and strength decreases. This occurs because the smaller the grains, the shorter the distance dislocations can move. Therefore it is desirable to use metal of the smallest average grain size which can be economically fabricated into the desired part.

In addition to strength, grain size will also effect formability, directionality, texture and surface appearance. Table 1 shows the effect of change in grain size on tensile strength, yield strength and elongation.

Table 1. Annealed Tempers Mechanical Properties, Brass Alloy C26000 Flat Products, Thickness 0.04 inches
Temper Grain Size Tensile Strength ksi Yield Strength 
(0.5% Ext.) ksi
Elongation in 2.0 inches, %
0.070 mm 46.0 14.0 65
0.050 mm 47.0 15.0 62
0.035 mm 49.0 17.0 57
0.025 mm 51.0 19.0 54
0.015 mm 53.0 22.0 50
Eight Hard 50.0 35.0 43
Quarter Hard 54.0 40.0 23

Table 2 describes some common grain size ranges and their recommended applications for manufacturing parts.

Table 2. Available Grain Size Ranges & Recommended Applications
Average Grain Size, mm. Typical Operations and Surface Characteristics
0.005 - 0.015 Stampings and shallow forming. Parts will exhibit good strength and a very smooth surface.
0.010 - 0.025 Stampings and shallow drawn parts. Parts will exhibit high strenght and smooth surface. Generally used for metal less than 0.010" thick.
0.015 - 0.030 Stampings, shallow drawn parts and deep drawn parts requiring buffable surfaces. Generally used for metals less than 0.12" thick.
0.020 - 0.035 Used for many drawn parts. This grain size range includes the largest average grain size which will produce parts essentially free of orange peel. Generally used for metal thickness up to 0.032".
0.025 - 0.040 Deep drawing especially for material 0.015" to 0.020" thick. Brass with grain size of 0.040 mm may exhibit some roughening of surface when severely stretched.
0.030 - 0.050 Stampings that do not require buffing or polishing and drawn brass parts with relatively good surface finish. Generally used for metal 0.015" to 0.025" thick.
0.040 - 0.060 General deep and shallow drawing of brass. Moderate orange peel may develop on surfaces. Normal size range of 0.020" to 0.040".
0.015 - 0.030 
0.060 - 0.090
Deep drawing of difficult shapes and deep drawing of metal and thicker. Parts will have rough surfaces with orange peel if they are not smoothed by ironing.


ASTM Committee E-4 has been a world leader in the standardization of grain size measurement methods. Initially, Methods E 2 recommended the ]effries planimetric method as the preferred measurement method. This method is more difficult to apply on a production basis than the intercept method due to the need to mark off the grains as you count them to minimize counting errors. This is unnecessary with the intercept method.

With the 1974 revision of Test Methods E 112, the intercept method, as modified by Halle Abrams, became the preferred analysis technique. The three-circle intercept method, as described in Test Methods E112 since 1974, provides a more precise estimate of the grain size in much less time than required by the planimetric method. In manual methods, it is essential to recommend the most efficient method for any measurement.

Test Methods E 112 is designed for rating the grain size of equiaxed grain structures with a normal size distribution; the standard is presently being revised to provide better instructions for rating the grain size of deformed grains. Other standards have been introduced by E-4 to handle the measurement of occasional, very large grains present in an otherwise uniform, fine grain size dispersion (E 930, Methods of Estimating the Largest Grain Observed in a Metallographic Section (ALA Grain Size)) or for rating the grain size when the size distribution is non-normal, for example, bi-modal or "duplex" (E 1181, Methods of Characterizing Duplex Grain Sizes). Committee E-4 has recently developed a grain size standard for ratings made using semiautomatic or automatic image analyzers (E 1382, Test Methods for Determining the Average Grain Size Using Semi-Automatic and Automatic lmage Analysis). No other standards writing organization has developed standards similar to Methods E 930, Methods E 1181 or Test Methods E1382.

Grain Size | Different Measures of Grain Size | Grain Size Scale | The International Scene of Grain Size | Grain Size Effect on Raman Spectral Intensity | Grain Size Characteristics | Grain Size Measurement Methods | Grain Size Evolution of Test Methods ASTM E112 | Corrosion | Metallographic Test | Metallographic Test Report | Stress Corrosion Cracking | Chloride SCC | Minimizing Chloride SCC | Stainless Steel Corrosion | intergranular Corrosion

Stainless Steel Intergranular Corrosion | Corrosion of Piping | Corrosion Resistant Stainless Steel | Corrosion Resistant Material | Corrosion Resistance | Seawater Resistance | Corrosion Mechanism | Corrosion Process | Surface Coatings for Corrosion | Galvanic Corrosion | Galvanic Corrosion Risks | Causes of Metal Corrosion | Stainless Steel for Corrosion Resistance | ASTM A262 | ASTM E112 | Corrosion Resistance Table | Metals Corrosion Resistance | Oxidation Resistance | NACE MR0175/ISO 15156 | Carbon on Corrosion Resistance

Share All Rights Reserved

Directory | Standard | Heat | Heat Exchanger | Temperature | Pressure | Corrosion | Hardness | Surface | Properties | Selection of Stainless Steel | Contact US

Useful Tools:

Metals weight Calculator
Stainless Steel Weight Calculator
Nickel Alloy Tubing Weight Calculator
Sheet Plate Weight Calculator
Hardness Values Conversion Calculator
Hardness Conversion Calculator
Length Weight Temperature Volume Pressure Conversion
Pipe Working Pressure Calculation
Pressure Conversion Converter Calculator
Gauge Sizes - Wire Sheet Plate Tube
Stainless Steel Pipe Schdule
Nominal Pipe Size
ANSI Pipe Chart

Stainless Steel Tubing and Pipe:

Heat Exchanger Tubes
U Bend Stainless Steel Tubing
Duplex Stainless Steel Pipe
Boiler Tubes, Condenser Tubes
Stainless Steel Seamless Pipes Corrugated Seamless Stainless Steel Pipe Tube
Cold Drawn Bright Annealing Stainless Steel Tubes
Heat resistant Stainless Steel Tubes
Welded Stainless Steel Pipe
Corrosion Resistant Stainless Steel Tube
Corrosion Resistance of Stainless Steel Tubes
Nickel Alloy Seamless Tubes:

UNS N08020 2.4600 Nickel Alloy 20 Seamless Tubing
UNS N02200 2.4066 200 Nickel Alloy Seamless Tubing
UNS N04400 400 Nickel Alloy 2.4360 Nickel Alloy Tubing
UNS N08800 800 Nickel Alloy Seamless Tubes
UNS N08810 800H UNS N08810 Nickel Alloy Seamless Tubes
UNS N08811 800HT Nickel Alloy Seamless Tubes
UNS N08825 825 2.4858 Nickel Alloy Seamless Tubes
UNS N06600 600 2.4816 Nickel Alloy Seamless Tubes
UNS N06625 625 2.4856 Nickel Alloy Seamless Tubes
UNS N10276 C-276 2.4819 Nickel Alloy Seamless Tubing
Why Choose US?

Production Equipment
Testing Equipement
Qualification and Certificates
Quality Control Systerm
Service Range and Procedure

Contact With US:
Tel: +86-159-61185386