Zhejiang Guanyu Stainless Steel Tube Co., Ltd  
  Directory | Useful Tool | Sitemap | Contact US | Home

         

Corrosion

ASTM A262 Intergranular Corrosion Test IGC






Intergranular corrosion is sometimes also called "intercrystalline corrosion" or "interdendritic corrosion". In the presence of tensile stress, cracking may occur along grain boundaries and this type of corrosion is frequently called "interranular stress corrosion cracking (IGSCC)" or simply "intergranular corrosion cracking".

Intergranular corrosion in stainless steel may result from precipitation of carbides, nitrides or intermetallic phases. Only in the most highly oxidizing solutions can intergranular attack be caused by intermetallic phases. When a test is to be restricted to carbides, in a material containing nitrides or intermetallic phases, a less oxidizing solution is chosen.

The following tests are carried out by us as per the ASTM A262 specification.

Oxalic Acid Test, ASTM A262, Practice A (Oxalic Acid Etch)

The oxalic acid etch test is a rapid method of screening those specimens of certain stainless steel grades which are essentially free of susceptibility to intergranular attack associated with chromium carbide participates. The test is used for acceptance but not rejection of material.

Ferric Sulfate - Sulfuric Acid, ASTM A262 - Practice B (Streicher Test)

This test is based on weight loss determinations and provides a quantitative measure of the relative performance of the material evaluated. The procedure includes subjecting a specimen to a 24 to 120 hour boil in ferric sulfate - 50% sulfuric acid. This procedure measures the susceptibility of stainless steel and nickel alloys to inter granular attack associated with the precipitation of chromium carbides at grain boundaries.



Nitric Acid, ASTM A262, Practice C, (Huey Test)

The specimens are boiled for five periods, each of 48 hours, in a 65 per cent solution of nitric acid. The corrosion rate during each boiling period is calculated from the decrease in the weight of the specimens. Properly interpreted, the results can reveal whether or not the steel has been heat-treated in the correct manner. The customer must specify the maximum permissible corrosion rate and, in applicable cases, data on sensibilizing heat treatment.

The Huey test environment is strongly oxidizing, and, is only used as a check on whether the material has been correctly heat treated. This test is suitable for the detection of chromium depleted regions as well as intermetallic precipitations, like sigma phase, in the material. The Huey test is also used for materials that come into contact with strongly oxidising agents, e.g. nitric acid. This procedure may also be used to check the effectiveness of stabilizing elements and of reductions in carbon content in reducing susceptibility to inter granular attack in chromium-nickel stainless steel.

Copper - Copper Sulfate - 16% sulfuric acid, ASTM A262 - Practice E (Strauss Test)

This procedure is conducted to determine the susceptibility of austenitic stainless steel to inter granular attack associated with the precipitation of chromium-rich carbides. Once the specimen has been subjected to the solution boil, it is bent through 180° and over a diameter equal to the thickness of the specimen being bent. This test is based on a visual examination of the bent specimen.


Copper - Copper Sulfate - 50% sulfuric acid, ASTM A262 - Practice F
This test is based on weight loss determination which provides a quantitative measure of the relative performance of the material evaluated. It measures the susceptibility of "as received" stainless steels to inter granular attack.


Salt Spray (Neutral / Fog), ASTM B117

This is the most commonly used salt spray for testing of inorganic and organic coatings, especially where such tests are used for material or product specifications. Salt Spray testing is a tool for evaluation the uniformity of thickness and degree of porosity of metallic and nonmetallic protective coatings. A number of samples can be tested at once depending upon their size CASS Test, tarnishing test are also done.

Stainless Steel Tubes Intergranular Corrosion

Pitting Corrosion Test, ASTM Gr 48

This Procedure is used to assist in the selection of test methods that can be used in the identification and examination of pits and in the evaluation of pitting corrosion to determine the extent of its effect. The importance of this evaluation is to be able to determine the extent of pitting, either in a service application where it is necessary to predict the remaining life in a metal structure, or in laboratory test programs that are used to select the most pitting-resistant materials for service. ASTM Gr 48 Method A and ASTM A923 Method C are typical pitting corrosion tests performed.

Hydrogen-Induced Cracking (HIC) Test, NACE TMO284

This test method evaluates the resistance of pipeline and pressure vessel plate steels to Hydrogen Inducted Cracking caused by hydrogen absorption from aqueous sulfide corrosion. An unstressed test specimen is exposed to a solution at ambient temperature and pressure and after a specified time, the test specimen is removed and evaluated.

Sulfide Stress Corrosion Cracking (SSCC), NACE TM 0177

The polythionic acid (sulfurous acid and hydrogen sulfide) environment provides a way of evaluating the resistance of stainless steels and related alloys to inter-granular stress corrosion cracking. This practice can be applied to wrought products, castings, weld metal of stainless steels or other materials to be used in environments containing sulfur or sulfides


Chloride Stress Corrosion Test as per ASTM Gr 36 Specification

Stainless Steel Tubes Intergranular Corrosion

ASTM A262 Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels
Corrosion | Metallographic Test | Metallographic Test Report | Stress Corrosion Cracking | Chloride SCC | Minimizing Chloride SCC | Stainless Steel Corrosion | Intergranular Corrosion | Stainless Steel Intergranular Corrosion | Corrosion of Piping Corrosion Resistant Stainless Steel | Corrosion Resistant Material | Corrosion Resistance | Seawater Resistance

Corrosion Mechanism | Corrosion Process | Surface Coatings for Corrosion | Galvanic Corrosion | Galvanic Corrosion Risks Causes of Metal Corrosion | Stainless Steel for Corrosion Resistance | ASTM A262 | ASTM E112 | Corrosion Resistance Table | Metals Corrosion Resistance | Oxidation Resistance | NACE MR0175/ISO 15156 | Carbon on Corrosion Resistance

Metallographic Test - Metallography Testing
Metallographic Test Report
Stress Corrosion Cracking (SCC)
Chloride Stress Corrosion Cracking
Stainless Steel Corrosion
Intergranular Corrosion
Intergranular Corrosion of Stainless Steel Tubes
Corrosion Resistant Stainless Steel Tube
Corrosion Resistance of Stainless Steel Tubes
Seawater Resistance of Stainless Steel Tubes
Corrosion Mechanism in Stainless Steel Tube
ASTM A262 Intergranular Corrosion Test IGC
ASTM E112 Standard Test Methods for Determining Average Grain Size
Methods of minimizing chloride stress corrosion cracking

TubingChina.com All Rights Reserved

Directory | Standard | Heat | Heat Exchanger | Temperature | Pressure | Corrosion | Hardness | Surface | Properties | Select Stainless Steel | Contact US

Useful Tools:

Stainless Steel Weight Calculator
Metals Weight Calculator
Nickel Alloy Weight Calculator
Copper Brass Alloy Weight Calculator
Copper Brass Alloy Sheet Plate Weight Calculator
Sheet Plate Weight Calculator
Hardness Conversion Calculator
Hardness Conversion Chart
Rockwell Brinell Vickers Shore Hardness Conversion Chart
Conversion Calculator
Length Weight Temperature Volume Pressure Calculater
Pipe Working Pressure Calculator
Pressure Conversion Converter
Round Bar Size Calculator
Gauge Sizes
Sheet Metal Gauge
Pipe Schedule
Nominal Pipe Size
ANSI Pipe Chart
Inch to mm Chart
Stainless Steel Pipe Sizes
Stainless Steel Tubing Sizes Chart
Stainless Steel L H Grade
Stainless Steel Density
Conversion of Stainless Steel
Nickel Alloy Grades Comparison Material Grade Chart Carbon Steel
Structural Steel Comparison Chart



Main Products:

BA Tube | AP Tube
Condenser Tubes Tubing
Stainless Steel Reheater Tube Superheater Tubes
Stainless Steel U bend Tube
Nickel Alloy U bend Tubes
Copper Alloy U Bend Tubes
Heat Exchanger Tube
Super Duplex Pipe
Nickel Alloy Tube
Brass Alloy Tubing
Copper Nickel Alloys Tubes
Stainless Steel Hollow Tube
Stainless Steel Oval Tubing
Stainless Steel Square Tubing
Stainless Steel Rectangular Tubing
Stainless Steel Capillary Tube
Duplex Stainless Steel Pipe
Seamless Stainless Steel Tubing
Corrugated Stainless Steel Tubing
Stainless Steel Twisted Tube
Polishing Stainless Steel Tubing
Stainless Steel Aircraft Tube
Stainless Steel Hydraulic Tubing
Stainless Steel Instrumentation Tubing
Stainless Steel Angle Iron Bar
Stainless Steel Mechanical Tube
Bright Annealing Stainless Tube
Heat resistant Stainless Steel
Stainless Steel Welded Pipe
Extruded Serrated Finned Tubes Integral Finned Tubes / Extruded Aluminum Finned Tubes
Brass Alloys Copper Nickel Alloy Integral Low Finned Tubes
HFW High Frequency Welded Helical Spiral Serrated Finned Tubes
Corrosion Resistant Stainless Steel
Corrosion Resistance Stainless Steel

Stainless Steel Tubing Pipe

304 Stainless Steel Pipe
304L Stainless Steel Pipe
304H Stainless Steel Pipe
304/304L Stainless Steel Tubing
309S Stainless Steel Pipe
310S Stainless Steel Pipe
316L Stainless Steel Tubing
316Ti Stainless Steel Tube
317L Stainless Steel Pipe
321 321H Stainless Steel
347 347H Stainless Steel
904L N08094 Seamless Tubes
17-4 PH 630 UNS S17400 Stainless Steel
253MA S30815 Stainless Steel Tube
S31254 254 SMO Pipe
S31803 Stainless Steel
2205 Duplex Pipe Tubing
S32101 Stainless Steel
S32304 Stainless Steel
2507 Super Duplex Pipe
S32750 Super Duplex Pipe
S32760 Super Duplex Steel
1.4462 Stainless Steel Pipe
ASTM A213 | ASTM A269
ASTM A312 | ASTM A511
ASTM A789 | ASTM A790
ASTM B161 / ASME SB 161 | ASTM B111
EN 10216-5
ASTM A789 ASME SA 789 S31803 S32205 S32101 S32750 S32760 S32304 S31500 S31260 Seamless Tubes
EN 10216-5 1.4462 1.4362 1.4162 1.4410 1.4501 Seamless Tubes
Nickel Alloy Tubing:

UNS N08020 Alloy 20 Tubing
UNS N02200 Alloy 200 Tube
UNS N02201 Alloy 201 Pipe
UNS N04400 Monel 400 Tubing
N06600 Inconel 600 Tube
N06601 Inconel 601 Tubing
N06625 Inconel 625 Tubes
N08800 Incoloy 800 Tube
N08810 Incoloy 800H Tube
N08811 Incoloy 800HT Tubing
UNS N08825 Incoloy 825 Pipe
ASTM B622 N10276 C276 Tubing
ASTM B622 N06022 Hastelloy C-22 Alloy Tubes
C28000 Brass Seamless Tubes C44300 Brass Seamless Tubes
C68700 Brass Seamless Tubes
C70600 Copper Nickel Tubes
C71500 Copper Nickel Tubes
DIN 2391 Seamless Precision Steel Tubes
EN 10305-1 E215 E235 E355 Seamless Precision Steel Tube Tubing Tubes
DIN 2393 St28 St34.2 St37.2 St44.2 St52.3 Welded Precision Steel Tubes
EN 10305-2 E195 E235 E355 Welded Cold Drawn Precision Steel Tube