Zhejiang Guanyu Stainless Steel Tube Co., Ltd  
  Directory | Useful Tool | Sitemap | Contact US | Home

         

Corrosion

Comparision Grade 304 304L 316 316L Corrosion Resistance






As American AISI basic grades, the only practical difference between 304 or 316 and 304L or 316L is carbon content. The carbon ranges are 0.08% maximum for 304 and 316 and 0.030% maximum for the 304L and 316L types. All other element ranges are essentially the same (nickel range for 304 is 8.00-10.50% and for 304L 8.00-12.00%).

There are two European steel of the '304L' type, 1.4306 and 1.4307. The 1.4306 is the variant most commonly offered, outside Germany. The 1.4301 (304) and 1.4306 (304L) have carbon ranges of 0.07% maximum and 0.030% maximum, respectively. The chromium and nickel ranges are similar, nickel for both grades having an 8% minimum. The European grades for the 316 and 316L types, 1.4401 and 1.4404, match on all elements with carbon ranges of 0.07% maximum for 1.4401 and 0.030% maximum for 1.4404.

Effect of carbon on corrosion resistance

The lower carbon 'variants' (316L) were established as alternatives to the 'standards' (316) carbon range grade to overcome the risk of intercystalline corrosion (weld decay), which was identified as a problem in the early days of the application of these stainless steel tube. This can result if the steel is held in a temperature range 450 to 850 for periods of several minutes, depending on the temperature and subsequently exposed to aggressive corrosive environments. Corrosion then takes place next to grain boundaries.

If the carbon level is below 0.030% then this intercrystalline corrosion does not take place following exposure to these temperatures, especially for the sort of time normally experienced in the heat affected zone of welds in 'thick' sections of steel.




Effect of carbon level on weldability

There is a view that the low carbon types are easier to weld than the standard carbon types.

There does not seem to be a clear reason for this and the differences are probably associated with the lower strength of the low carbon type. The low carbon type may be easier to shape and form, which in turn may also affect the levels of residual stress left the steel after is forming and fitting up for welding. This may result in the 'standard' carbon types needing more force to hold them in position once fitted-up for welding, with more of a tendency to spring-back if not properly held in place.

The welding consumables for both types are based on a low carbon composition, to avoid intercrystalline corrosion risk in the solidified weld nugget or from the diffusion of carbon into the parent (surrounding) metal.

Dual-certification of low carbon composition steel

Commercially produced steels, using current steelmaking methods, are often produced as the low carbon type as a matter of course due to the improved control in modern steelmaking. Consequently finished steel products are often offered to the market 'dual certified' to both grade designations as they can then be used for fabrications specifying either grade, within a particular standard.

For example for coil, sheet or plate

304 Types

    BS EN 10088-2 1.4301 / 1.4307 to the European standard.
    ASTM A240 304 / 304L OR ASTM A240 / ASME SA240 304 / 304L to the American pressure vessel standards.

316 Types

    BS EN 10088-2 1.4401 / 1.4404 to the European standard.
    ASTM A240 316 / 316L OR ASTM A240 / ASME SA240 316 / 316L, to the American pressure vessel standards.


Selection 316L Stainless Steel for High Purity Semiconductor Gas Filter Assemblies
Pipes Tubes Plates Bars Square Tubes Weight Calculation Calculator
Pipe Working Pressure Calculation
Metals Weight Calculator Calculation

  Stainless Steel Tube/Pipe/Tubing, Nickel Alloy Tubing, Brass Alloy Tubing, Copper Nickel Pipe Material Grades


TubingChina.com All Rights Reserved

Directory | Standard | Heat | Heat Exchanger | Temperature | Pressure | Corrosion | Hardness | Surface | Properties | Select Stainless Steel | Contact US

Useful Tools:

Stainless Steel Weight Calculator
Metals Weight Calculator
Nickel Alloy Weight Calculator
Copper Brass Alloy Weight Calculator
Copper Brass Alloy Sheet Plate Weight Calculator
Sheet Plate Weight Calculator
Hardness Conversion Calculator
Hardness Conversion Chart
Rockwell Brinell Vickers Shore Hardness Conversion Chart
Conversion Calculator
Length Weight Temperature Volume Pressure Calculater
Pipe Working Pressure Calculator
Pressure Conversion Converter
Round Bar Size Calculator
Gauge Sizes
Sheet Metal Gauge
Pipe Schedule
Nominal Pipe Size
ANSI Pipe Chart
Inch to mm Chart
Stainless Steel Pipe Sizes
Stainless Steel Tubing Sizes Chart
Stainless Steel L H Grade
Stainless Steel Density
Conversion of Stainless Steel
Nickel Alloy Grades Comparison Material Grade Chart Carbon Steel
Structural Steel Comparison Chart



Main Products:

BA Tube | AP Tube
Condenser Tubes Tubing
Stainless Steel Reheater Tube Superheater Tubes
Stainless Steel U bend Tube
Nickel Alloy U bend Tubes
Copper Alloy U Bend Tubes
Heat Exchanger Tube
Super Duplex Pipe
Nickel Alloy Tube
Brass Alloy Tubing
Copper Nickel Alloys Tubes
Stainless Steel Hollow Tube
Stainless Steel Oval Tubing
Stainless Steel Square Tubing
Stainless Steel Rectangular Tubing
Stainless Steel Capillary Tube
Duplex Stainless Steel Pipe
Seamless Stainless Steel Tubing
Corrugated Stainless Steel Tubing
Stainless Steel Twisted Tube
Polishing Stainless Steel Tubing
Stainless Steel Aircraft Tube
Stainless Steel Hydraulic Tubing
Stainless Steel Instrumentation Tubing
Stainless Steel Angle Iron Bar
Stainless Steel Mechanical Tube
Bright Annealing Stainless Tube
Heat resistant Stainless Steel
Stainless Steel Welded Pipe
Extruded Serrated Finned Tubes Integral Finned Tubes / Extruded Aluminum Finned Tubes
Brass Alloys Copper Nickel Alloy Integral Low Finned Tubes
HFW High Frequency Welded Helical Spiral Serrated Finned Tubes
Corrosion Resistant Stainless Steel
Corrosion Resistance Stainless Steel

Stainless Steel Tubing Pipe

304 Stainless Steel Pipe
304L Stainless Steel Pipe
304H Stainless Steel Pipe
304/304L Stainless Steel Tubing
309S Stainless Steel Pipe
310S Stainless Steel Pipe
316L Stainless Steel Tubing
316Ti Stainless Steel Tube
317L Stainless Steel Pipe
321 321H Stainless Steel
347 347H Stainless Steel
904L N08094 Seamless Tubes
17-4 PH 630 UNS S17400 Stainless Steel
253MA S30815 Stainless Steel Tube
S31254 254 SMO Pipe
S31803 Stainless Steel
2205 Duplex Pipe Tubing
S32101 Stainless Steel
S32304 Stainless Steel
2507 Super Duplex Pipe
S32750 Super Duplex Pipe
S32760 Super Duplex Steel
1.4462 Stainless Steel Pipe
ASTM A213 | ASTM A269
ASTM A312 | ASTM A511
ASTM A789 | ASTM A790
ASTM B161 / ASME SB 161 | ASTM B111
EN 10216-5
ASTM A789 ASME SA 789 S31803 S32205 S32101 S32750 S32760 S32304 S31500 S31260 Seamless Tubes
EN 10216-5 1.4462 1.4362 1.4162 1.4410 1.4501 Seamless Tubes
Nickel Alloy Tubing:

UNS N08020 Alloy 20 Tubing
UNS N02200 Alloy 200 Tube
UNS N02201 Alloy 201 Pipe
UNS N04400 Monel 400 Tubing
N06600 Inconel 600 Tube
N06601 Inconel 601 Tubing
N06625 Inconel 625 Tubes
N08800 Incoloy 800 Tube
N08810 Incoloy 800H Tube
N08811 Incoloy 800HT Tubing
UNS N08825 Incoloy 825 Pipe
ASTM B622 N10276 C276 Tubing
ASTM B622 N06022 Hastelloy C-22 Alloy Tubes
C28000 Brass Seamless Tubes C44300 Brass Seamless Tubes
C68700 Brass Seamless Tubes
C70600 Copper Nickel Tubes
C71500 Copper Nickel Tubes
DIN 2391 Seamless Precision Steel Tubes
EN 10305-1 E215 E235 E355 Seamless Precision Steel Tube Tubing Tubes
DIN 2393 St28 St34.2 St37.2 St44.2 St52.3 Welded Precision Steel Tubes
EN 10305-2 E195 E235 E355 Welded Cold Drawn Precision Steel Tube