Zhejiang Guanyu Stainless Steel Tube Co., Ltd  
  Directory | Useful Tool | Sitemap | Contact US | Home

         

Corrosion

Grain Size Measurement Methods






Although Committee E-4 was formed in 1916 for the express purpose of establishing standard magnifications for micrographs, its first standard, E 2-17T, Methods of Preparation of Micrographs of Metals and Alloys, was partly devoted to grain size measurement. Two basic approaches to measure grain size were being developed at that time. In the United States in 1894, Albert Sauveur published a "planimetric" approach, which was further developed by Zay Jeffries with two 1916 publications.

This approach measured grain size in terms of the number of grains visible on a cross section within a fixed area, the number per square inch at 100X, or the number per square millimetre at 1X, NA. From this value, the average cross-sectional area of the bisected grains can be computed. This is not an average of the maximum cross-sectional area of each grain because the sectioning plane does not intersect each grain at its maximum width.

Many grain size raters expressed the need for simpler ways to estimate the grain size. In some cases, such as heat clearance, grain size measurement is required. In many cases, it is required that G be 5 or greater (i.e., "fine- grained"). Hence, if the grain size is substantially finer than this, a quick method, which may not be as precise as an actual measurement, is adequate. A comparison chart method with examples of grain sizes meets this need adequately, as long as the grain size distribution is normal. Additionally, the specimens should be etched in the same manner as depicted on the chart. If the grain size is near the specification limit, an actual measurement is preferred due to the improved precision. The first grain size comparison chart was introduced in Methods E 2 in its 1930 revision; this chart was for copper.

In Germany in 1904, Emil Heyn published an intercept approach for measuring grain size. In this method, one or more lines are superimposed over the structure at a known magnification. The true line length is divided by the number of grains intercepted by the line. This gives the average length of the line within the intercepted grains. This average intercept length will be less than the average grain diameter but the two are interrelated.

Note that these methods are applied on the polished surface of the specimen, that is, on a plane that cuts through the three-dimensional grains. Thus, these are planar rather than spatial measures of the grain size. The planimetric, or Jeffries method, defines the grain size in terms of the number of grains per unit area, the average grain area, or the average grain diameter, while the Heyn intercept method defines it in terms of the average intercept length. The comparison chart method expresses the grain size only in terms of G, except for the copper charts, which useĀ d.

Grain Size | Different Measures of Grain Size | Grain Size Scale | The International Scene of Grain Size | Grain Size Effect on Raman Spectral Intensity | Grain Size Characteristics | Grain Size Measurement Methods | Grain Size Evolution of Test Methods ASTM E112 | Corrosion | Metallographic Test | Metallographic Test Report | Stress Corrosion Cracking | Chloride SCC | Minimizing Chloride SCC | Stainless Steel Corrosion | intergranular Corrosion | Stainless Steel Intergranular Corrosion | Corrosion of Piping | Corrosion Resistant Stainless Steel | Corrosion Resistant Material | Corrosion Resistance | Seawater Resistance | Corrosion Mechanism | Corrosion Process | Surface Coatings for Corrosion | Galvanic Corrosion | Galvanic Corrosion Risks | Causes of Metal Corrosion | Stainless Steel for Corrosion Resistance | ASTM A262 | ASTM E112 | Corrosion Resistance Table | Metals Corrosion Resistance | Oxidation Resistance | NACE MR0175/ISO 15156 | Carbon on Corrosion Resistance


TubingChina.com All Rights Reserved

Directory | Standard | Heat | Heat Exchanger | Temperature | Pressure | Corrosion | Hardness | Surface | Properties | Select Stainless Steel | Contact US

Useful Tools:

Stainless Steel Weight Calculator
Metals Weight Calculator
Nickel Alloy Weight Calculator
Copper Brass Alloy Weight Calculator
Copper Brass Alloy Sheet Plate Weight Calculator
Sheet Plate Weight Calculator
Hardness Conversion Calculator
Hardness Conversion Chart
Rockwell Brinell Vickers Shore Hardness Conversion Chart
Conversion Calculator
Length Weight Temperature Volume Pressure Calculater
Pipe Working Pressure Calculator
Pressure Conversion Converter
Round Bar Size Calculator
Gauge Sizes
Sheet Metal Gauge
Pipe Schedule
Nominal Pipe Size
ANSI Pipe Chart
Inch to mm Chart
Stainless Steel Pipe Sizes
Stainless Steel Tubing Sizes Chart
Stainless Steel L H Grade
Stainless Steel Density
Conversion of Stainless Steel
Nickel Alloy Grades Comparison Material Grade Chart Carbon Steel
Structural Steel Comparison Chart



Main Products:

BA Tube | AP Tube
Condenser Tubes Tubing
Stainless Steel Reheater Tube Superheater Tubes
Stainless Steel U bend Tube
Nickel Alloy U bend Tubes
Copper Alloy U Bend Tubes
Heat Exchanger Tube
Super Duplex Pipe
Nickel Alloy Tube
Brass Alloy Tubing
Copper Nickel Alloys Tubes
Stainless Steel Hollow Tube
Stainless Steel Oval Tubing
Stainless Steel Square Tubing
Stainless Steel Rectangular Tubing
Stainless Steel Capillary Tube
Duplex Stainless Steel Pipe
Seamless Stainless Steel Tubing
Corrugated Stainless Steel Tubing
Stainless Steel Twisted Tube
Polishing Stainless Steel Tubing
Stainless Steel Aircraft Tube
Stainless Steel Hydraulic Tubing
Stainless Steel Instrumentation Tubing
Stainless Steel Angle Iron Bar
Stainless Steel Mechanical Tube
Bright Annealing Stainless Tube
Heat resistant Stainless Steel
Stainless Steel Welded Pipe
Extruded Serrated Finned Tubes Integral Finned Tubes / Extruded Aluminum Finned Tubes
Brass Alloys Copper Nickel Alloy Integral Low Finned Tubes
HFW High Frequency Welded Helical Spiral Serrated Finned Tubes
Corrosion Resistant Stainless Steel
Corrosion Resistance Stainless Steel

Stainless Steel Tubing Pipe

304 Stainless Steel Pipe
304L Stainless Steel Pipe
304H Stainless Steel Pipe
304/304L Stainless Steel Tubing
309S Stainless Steel Pipe
310S Stainless Steel Pipe
316L Stainless Steel Tubing
316Ti Stainless Steel Tube
317L Stainless Steel Pipe
321 321H Stainless Steel
347 347H Stainless Steel
904L N08094 Seamless Tubes
17-4 PH 630 UNS S17400 Stainless Steel
253MA S30815 Stainless Steel Tube
S31254 254 SMO Pipe
S31803 Stainless Steel
2205 Duplex Pipe Tubing
S32101 Stainless Steel
S32304 Stainless Steel
2507 Super Duplex Pipe
S32750 Super Duplex Pipe
S32760 Super Duplex Steel
1.4462 Stainless Steel Pipe
ASTM A213 | ASTM A269
ASTM A312 | ASTM A511
ASTM A789 | ASTM A790
ASTM B161 / ASME SB 161 | ASTM B111
EN 10216-5
ASTM A789 ASME SA 789 S31803 S32205 S32101 S32750 S32760 S32304 S31500 S31260 Seamless Tubes
EN 10216-5 1.4462 1.4362 1.4162 1.4410 1.4501 Seamless Tubes
Nickel Alloy Tubing:

UNS N08020 Alloy 20 Tubing
UNS N02200 Alloy 200 Tube
UNS N02201 Alloy 201 Pipe
UNS N04400 Monel 400 Tubing
N06600 Inconel 600 Tube
N06601 Inconel 601 Tubing
N06625 Inconel 625 Tubes
N08800 Incoloy 800 Tube
N08810 Incoloy 800H Tube
N08811 Incoloy 800HT Tubing
UNS N08825 Incoloy 825 Pipe
ASTM B622 N10276 C276 Tubing
ASTM B622 N06022 Hastelloy C-22 Alloy Tubes
C28000 Brass Seamless Tubes C44300 Brass Seamless Tubes
C68700 Brass Seamless Tubes
C70600 Copper Nickel Tubes
C71500 Copper Nickel Tubes
DIN 2391 Seamless Precision Steel Tubes
EN 10305-1 E215 E235 E355 Seamless Precision Steel Tube Tubing Tubes
DIN 2393 St28 St34.2 St37.2 St44.2 St52.3 Welded Precision Steel Tubes
EN 10305-2 E195 E235 E355 Welded Cold Drawn Precision Steel Tube