Zhejiang Guanyu Stainless Steel Tube Co., Ltd  
  Directory | Useful Tool | Sitemap | Contact US | Home

         

Corrosion

Reasons for Biofouling Resistance




Early theories were linked with the fact that resistance to biofouling was significantly reduced when cathodic protection was applied. These were based on the reasoning that it was copper ions released into the seawater which were toxic to macrofouling. However, copper-nickels corrode at a lower rate than copper and still exhibit a similar biofouling response. Also, long-term trials in support of the Morecambe Field platforms have shown that although biofouling will occur when cathodic protection is applied, some biofouling resistance is retained. Table 4 shows data from 10 year trials on sheathed pilings, which were exposed in a natural seawater channel at the LaQue Corrosion Services, in Wrightsville Beach, North Carolina.

The biofouling mass accumulated on the bar steel piling is more than twice as great as that on direct welded copper-nickel, whether or not it was cathodically protected, and more than 20 times that attached to insulated sheathing. On the sheathing in the Morecambe Field itself, the divers estimated the fouling to be reduced to about 30% of the lower adjacent steel.

It was in the 1970's that observations at Wrightsville Beach suggested the surface film itself was largely responsible for the biofouling resistance and that when freely corroding and under quiet conditions, the oxide film would gradually convert to cupric hydroxychloride. This film was considered to be less adherent and protective than the cuprous oxide type and would allow fouling to become established. Being less adherent, after a time it would slough away leaving a protective cuprous oxide film exposed again. The observations did not identify any unfouled areas directly adjacent to copper-nickel boundaries which would indicate a copper ion release mechanism. However, since that time, other products have been developed for protecting offshore structures which are composites of copper-nickel wire or granules embedded into an insulating substrate such as rubber or polyester gel with discrete areas of copper-nickel exposed on the surface. These products have shown full protection of the surface although they only expose about 30% of the surface area as copper-nickel. Thus, there must be some antifouling effects in close proximity to copper-nickel.

It appears, therefore, that the most likely explanation is that the biofouling resistance is a combination of the two effects; that biofouling response relies on both ion release and the nature of the surface film. It is most probable that it is due to the unoxidised copper ions normally present within the protective film and is an area where more detailed work is required.

Table. Biofouling Mass On 90-10 Copper-Nickel Sheathed Steel Test Pilings After Five and Ten Years
Piling Kg/sq.m Percent
Bare Steel. (control) - not sheathed
5 Year removal 18.00 100.0
10 year removal 12.00 100.0
Concrete Insulated Sheathing
5 Year removal 0.36 1.9
10 year removal 0.14 1.2
Sheathing Directly Welded to Piling
5 Year removal 7.95 44.3
10 year removal 4.43 36.8
Sheathing Directly Welded to Piling
5 Year removal 7.95 44.3
10 year removal 4.43 36.8
Rubber Insulated Sheathing
5 Year removal 0.26 1.4
10 year removal 0.62 5.3

Copper Nickel for Seawater Corrosion Resistance and Antifoulin
90-10 and 70-30 Copper-Nickel Alloys

Corrosion Resistance

  • The Importance of the Surface
  • General Corrosion Rates
  • Localised Corrosion
  • Velocity Effects
  • Sand Erosion
  • Galvanic Properties
  • Handling Sulfides
  • Ferrous sulfate treatment

  • Biofouling Resistance

  • Ease of Biofouling Removal
  • Reasons for Biofouling Resistance
  • Boat Hull Experience
  • Offshore Sheathing

  • Conclusions


    TubingChina.com All Rights Reserved

    Directory | Standard | Heat | Heat Exchanger | Temperature | Pressure | Corrosion | Hardness | Surface | Properties | Select Stainless Steel | Contact US

    Useful Tools:

    Stainless Steel Weight Calculator
    Metals Weight Calculator
    Nickel Alloy Weight Calculator
    Copper Brass Alloy Weight Calculator
    Copper Brass Alloy Sheet Plate Weight Calculator
    Sheet Plate Weight Calculator
    Hardness Conversion Calculator
    Hardness Conversion Chart
    Rockwell Brinell Vickers Shore Hardness Conversion Chart
    Conversion Calculator
    Length Weight Temperature Volume Pressure Calculater
    Pipe Working Pressure Calculator
    Pressure Conversion Converter
    Round Bar Size Calculator
    Gauge Sizes
    Sheet Metal Gauge
    Pipe Schedule
    Nominal Pipe Size
    ANSI Pipe Chart
    Inch to mm Chart
    Stainless Steel Pipe Sizes
    Stainless Steel Tubing Sizes Chart
    Stainless Steel L H Grade
    Stainless Steel Density
    Conversion of Stainless Steel
    Nickel Alloy Grades Comparison Material Grade Chart Carbon Steel
    Structural Steel Comparison Chart



    Main Products:

    BA Tube | AP Tube
    Condenser Tubes Tubing
    Stainless Steel Reheater Tube Superheater Tubes
    Stainless Steel U bend Tube
    Nickel Alloy U bend Tubes
    Copper Alloy U Bend Tubes
    Heat Exchanger Tube
    Super Duplex Pipe
    Nickel Alloy Tube
    Brass Alloy Tubing
    Copper Nickel Alloys Tubes
    Stainless Steel Hollow Tube
    Stainless Steel Oval Tubing
    Stainless Steel Square Tubing
    Stainless Steel Rectangular Tubing
    Stainless Steel Capillary Tube
    Duplex Stainless Steel Pipe
    Seamless Stainless Steel Tubing
    Corrugated Stainless Steel Tubing
    Stainless Steel Twisted Tube
    Polishing Stainless Steel Tubing
    Stainless Steel Aircraft Tube
    Stainless Steel Hydraulic Tubing
    Stainless Steel Instrumentation Tubing
    Stainless Steel Angle Iron Bar
    Stainless Steel Mechanical Tube
    Bright Annealing Stainless Tube
    Heat resistant Stainless Steel
    Stainless Steel Welded Pipe
    Extruded Serrated Finned Tubes Integral Finned Tubes / Extruded Aluminum Finned Tubes
    Brass Alloys Copper Nickel Alloy Integral Low Finned Tubes
    HFW High Frequency Welded Helical Spiral Serrated Finned Tubes
    Corrosion Resistant Stainless Steel
    Corrosion Resistance Stainless Steel

    Stainless Steel Tubing Pipe

    304 Stainless Steel Pipe
    304L Stainless Steel Pipe
    304H Stainless Steel Pipe
    304/304L Stainless Steel Tubing
    309S Stainless Steel Pipe
    310S Stainless Steel Pipe
    316L Stainless Steel Tubing
    316Ti Stainless Steel Tube
    317L Stainless Steel Pipe
    321 321H Stainless Steel
    347 347H Stainless Steel
    904L N08094 Seamless Tubes
    17-4 PH 630 UNS S17400 Stainless Steel
    253MA S30815 Stainless Steel Tube
    S31254 254 SMO Pipe
    S31803 Stainless Steel
    2205 Duplex Pipe Tubing
    S32101 Stainless Steel
    S32304 Stainless Steel
    2507 Super Duplex Pipe
    S32750 Super Duplex Pipe
    S32760 Super Duplex Steel
    1.4462 Stainless Steel Pipe
    ASTM A213 | ASTM A269
    ASTM A312 | ASTM A511
    ASTM A789 | ASTM A790
    ASTM B161 / ASME SB 161 | ASTM B111
    EN 10216-5
    ASTM A789 ASME SA 789 S31803 S32205 S32101 S32750 S32760 S32304 S31500 S31260 Seamless Tubes
    EN 10216-5 1.4462 1.4362 1.4162 1.4410 1.4501 Seamless Tubes
    Nickel Alloy Tubing:

    UNS N08020 Alloy 20 Tubing
    UNS N02200 Alloy 200 Tube
    UNS N02201 Alloy 201 Pipe
    UNS N04400 Monel 400 Tubing
    N06600 Inconel 600 Tube
    N06601 Inconel 601 Tubing
    N06625 Inconel 625 Tubes
    N08800 Incoloy 800 Tube
    N08810 Incoloy 800H Tube
    N08811 Incoloy 800HT Tubing
    UNS N08825 Incoloy 825 Pipe
    ASTM B622 N10276 C276 Tubing
    ASTM B622 N06022 Hastelloy C-22 Alloy Tubes
    C28000 Brass Seamless Tubes C44300 Brass Seamless Tubes
    C68700 Brass Seamless Tubes
    C70600 Copper Nickel Tubes
    C71500 Copper Nickel Tubes
    DIN 2391 Seamless Precision Steel Tubes
    EN 10305-1 E215 E235 E355 Seamless Precision Steel Tube Tubing Tubes
    DIN 2393 St28 St34.2 St37.2 St44.2 St52.3 Welded Precision Steel Tubes
    EN 10305-2 E195 E235 E355 Welded Cold Drawn Precision Steel Tube