Zhejiang Guanyu Stainless Steel Tube Co., Ltd  
  Directory | Useful Tool | Sitemap | Contact US | Home

         

Corrosion

Biofouling Resistance








Copper-nickel alloys have a high inherent resistance to macrofouling. This reduces the frequency of cleaning of piping systems and condenser, and decreases wave loading and fouling removal costs for platform structures. Also, the down time and expense of applying antifouling coatings to boat hulls is avoided and fuel consumption is improved. Fouling that does form is poorly adherent and thus easily removed.

The biofouling resistance of copper-nickel tubing allows shipboard condensers to maintain good heat transfer capability for several months between mechanical cleanings without the need for onboard chlorine generators required for other tubing materials.

The most important requirement for optimum biofouling resistance is that the alloy should be freely exposed or electrically insulated from less noble alloys or free of cathodic protection as shown in Figure 4.




Exposure Panels. Panels after 12 months exposure at Langstone Harbour, UK. Left to right: Steel, 90-10 Copper-Nickel Sheathed Steel, Copper-Nickel; all products with aluminum anodes. Far right: unprotected copper nickel. There is no fouling on the unprotected Copper-Nickel.
FIGURE 4. Exposure Panels. Panels after 12 months exposure at Langstone Harbour, UK. Left to right: Steel, 90-10 Copper-Nickel Sheathed Steel, Copper-Nickel; all products with aluminum anodes. Far right: unprotected copper nickel. There is no fouling on the unprotected Copper-Nickel.

General observations have led to the understanding that for open seawater exposures, such as experienced on ship hulls or offshore splash zone sheathing, the slime layers (microfouling) do not build up sufficiently to support macrofouling. When exposed to long periods under quiet conditions, some macrofouling will eventually occur but this has been observed to slough away at intervals.

It is generally thought that the 70-30 copper-nickel alloy has less biofouling resistance than the 90-10 alloy, having a lower copper content, but this is not always borne out in practice. The longest running copper-nickel yacht, the Asperida has given trouble free service since 1968 and it has a 70-30 hull. Fourteen year exposure for 70-30 test panels under quiet, tidal and flowing conditions at the LaQue Corrosion Services, Wrightsville Beach, North Carolina, showed negligible fouling after that time. Five year exposure data under quiet conditions, again at the Wrightsville Beach site, showed the response to fouling to be the same whether the alloy exposed was 90-10, 70-30 and unalloyed copper itself.

The copper-nickels in the same trials were found to corrode at one third of the rate of the copper. 70-30 copper-nickel welds occasionally prove preferential sites for fouling compared with the 90-10 base material. However, the welds are slightly more noble than the 90-10 and there may be a galvanic influence on the biofouling resistance of the welds. More detailed examinations are required to explain this. Currently, it suffices to say that any differences in biofouling properties of 90-10 and 70-30 alloys would appear to be of little practical significance for hulls and offshore platform splash zone sheathing.

Copper Nickel for Seawater Corrosion Resistance and Antifoulin
90-10 and 70-30 Copper-Nickel Alloys

Corrosion Resistance

  • The Importance of the Surface
  • General Corrosion Rates
  • Localised Corrosion
  • Velocity Effects
  • Sand Erosion
  • Galvanic Properties
  • Handling Sulfides
  • Ferrous sulfate treatment

  • Biofouling Resistance

  • Ease of Biofouling Removal
  • Reasons for Biofouling Resistance
  • Boat Hull Experience
  • Offshore Sheathing

  • Conclusions




    TubingChina.com All Rights Reserved

    Directory | Standard | Heat | Heat Exchanger | Temperature | Pressure | Corrosion | Hardness | Surface | Properties | Select Stainless Steel | Contact US

    Useful Tools:

    Stainless Steel Weight Calculator
    Metals Weight Calculator
    Nickel Alloy Weight Calculator
    Copper Brass Alloy Weight Calculator
    Copper Brass Alloy Sheet Plate Weight Calculator
    Sheet Plate Weight Calculator
    Hardness Conversion Calculator
    Hardness Conversion Chart
    Rockwell Brinell Vickers Shore Hardness Conversion Chart
    Conversion Calculator
    Length Weight Temperature Volume Pressure Calculater
    Pipe Working Pressure Calculator
    Pressure Conversion Converter
    Round Bar Size Calculator
    Gauge Sizes
    Sheet Metal Gauge
    Pipe Schedule
    Nominal Pipe Size
    ANSI Pipe Chart
    Inch to mm Chart
    Stainless Steel Pipe Sizes
    Stainless Steel Tubing Sizes Chart
    Stainless Steel L H Grade
    Stainless Steel Density
    Conversion of Stainless Steel
    Nickel Alloy Grades Comparison Material Grade Chart Carbon Steel
    Structural Steel Comparison Chart



    Main Products:

    BA Tube | AP Tube
    Condenser Tubes Tubing
    Stainless Steel Reheater Tube Superheater Tubes
    Stainless Steel U bend Tube
    Nickel Alloy U bend Tubes
    Copper Alloy U Bend Tubes
    Heat Exchanger Tube
    Super Duplex Pipe
    Nickel Alloy Tube
    Brass Alloy Tubing
    Copper Nickel Alloys Tubes
    Stainless Steel Hollow Tube
    Stainless Steel Oval Tubing
    Stainless Steel Square Tubing
    Stainless Steel Rectangular Tubing
    Stainless Steel Capillary Tube
    Duplex Stainless Steel Pipe
    Seamless Stainless Steel Tubing
    Corrugated Stainless Steel Tubing
    Stainless Steel Twisted Tube
    Polishing Stainless Steel Tubing
    Stainless Steel Aircraft Tube
    Stainless Steel Hydraulic Tubing
    Stainless Steel Instrumentation Tubing
    Stainless Steel Angle Iron Bar
    Stainless Steel Mechanical Tube
    Bright Annealing Stainless Tube
    Heat resistant Stainless Steel
    Stainless Steel Welded Pipe
    Extruded Serrated Finned Tubes Integral Finned Tubes / Extruded Aluminum Finned Tubes
    Brass Alloys Copper Nickel Alloy Integral Low Finned Tubes
    HFW High Frequency Welded Helical Spiral Serrated Finned Tubes
    Corrosion Resistant Stainless Steel
    Corrosion Resistance Stainless Steel

    Stainless Steel Tubing Pipe

    304 Stainless Steel Pipe
    304L Stainless Steel Pipe
    304H Stainless Steel Pipe
    304/304L Stainless Steel Tubing
    309S Stainless Steel Pipe
    310S Stainless Steel Pipe
    316L Stainless Steel Tubing
    316Ti Stainless Steel Tube
    317L Stainless Steel Pipe
    321 321H Stainless Steel
    347 347H Stainless Steel
    904L N08094 Seamless Tubes
    17-4 PH 630 UNS S17400 Stainless Steel
    253MA S30815 Stainless Steel Tube
    S31254 254 SMO Pipe
    S31803 Stainless Steel
    2205 Duplex Pipe Tubing
    S32101 Stainless Steel
    S32304 Stainless Steel
    2507 Super Duplex Pipe
    S32750 Super Duplex Pipe
    S32760 Super Duplex Steel
    1.4462 Stainless Steel Pipe
    ASTM A213 | ASTM A269
    ASTM A312 | ASTM A511
    ASTM A789 | ASTM A790
    ASTM B161 / ASME SB 161 | ASTM B111
    EN 10216-5
    ASTM A789 ASME SA 789 S31803 S32205 S32101 S32750 S32760 S32304 S31500 S31260 Seamless Tubes
    EN 10216-5 1.4462 1.4362 1.4162 1.4410 1.4501 Seamless Tubes
    Nickel Alloy Tubing:

    UNS N08020 Alloy 20 Tubing
    UNS N02200 Alloy 200 Tube
    UNS N02201 Alloy 201 Pipe
    UNS N04400 Monel 400 Tubing
    N06600 Inconel 600 Tube
    N06601 Inconel 601 Tubing
    N06625 Inconel 625 Tubes
    N08800 Incoloy 800 Tube
    N08810 Incoloy 800H Tube
    N08811 Incoloy 800HT Tubing
    UNS N08825 Incoloy 825 Pipe
    ASTM B622 N10276 C276 Tubing
    ASTM B622 N06022 Hastelloy C-22 Alloy Tubes
    C28000 Brass Seamless Tubes C44300 Brass Seamless Tubes
    C68700 Brass Seamless Tubes
    C70600 Copper Nickel Tubes
    C71500 Copper Nickel Tubes
    DIN 2391 Seamless Precision Steel Tubes
    EN 10305-1 E215 E235 E355 Seamless Precision Steel Tube Tubing Tubes
    DIN 2393 St28 St34.2 St37.2 St44.2 St52.3 Welded Precision Steel Tubes
    EN 10305-2 E195 E235 E355 Welded Cold Drawn Precision Steel Tube