Zhejiang Guanyu Stainless Steel Tube Co., Ltd  
  Directory | Useful Tool | Sitemap | Contact US | Home

         

Corrosion

Effects of Copper Alloy Chemical Compositions on Corrosion




Copper and high-copper alloys (C10100 - C19600; C 80100 - C 82800) have similar corrosion resistance. They have excellent resistance to seawater corrosion and biofouling, but are susceptible to erosion-corrosion at high water velocities. The high-copper alloys are primarily used in applications that require enhanced mechanical performance, often at slightly elevated temperature, with good thermal or electrical conductivity. Processing for increased strength in the high-copper alloys generally improves their resistance to erosion-corrosion.

Brass (C 20500 - C 28580) are basically copper-zinc alloys and are the most widely used group of copper alloys. The resistance of brass to corrosion by aqueous solutions does not change markedly as long as the zinc content does not exceed about 15%. Above 15% Zn, dezincification may occur.

Susceptibility to stress-corrosion cracking (SCC) is significantly affected by zinc content; alloys that contain more zinc are more susceptible. Resistance increases substantially as zinc content decreases from 15% to 0%. Stress-corrosion cracking is practically unknown in commercial copper. Elements such as lead, tellurium, beryllium, chromium, phosphorus, and manganese have little or no effect on the corrosion resistance of coppers and binary copper-zinc alloys. These elements are added to enhance such mechanical properties as machinability, strength, and hardness.

Tin Brass (C 40400 - C 49800; C 90200 - C 94500). Tin additions significantly increase the corrosion resistance of some brass, especially resistance to dezincification.

Cast brass for marine applications are also modified by the addition of tin, lead, and, sometimes, nickel. This group of alloys is known by various names, including composition bronze, ounce metal, and valve metal.

Aluminum Brass (C66400-C69900). An important constituent of the corrosion film on a brass that contains few percents of aluminum in addition to copper and zinc is aluminum oxide (A1203), which markedly increases resistance to impingement attack in turbulent high-velocity saline water.

Phosphor Bronzes (C 50100 - C 52400). Addition of tin and phosphorus to copper produces good resistance to flowing seawater and to most nonoxidizing acids except hydrochloric HCl. Alloys containing 8 to 10% Sn have high resistance to impingement attack. Phosphor bronzes are much less susceptible to SCC than brasses and are similar to copper in resistance to sulfur attack. Tin bronzes-alloys of copper and tin-tend to be used primarily in the cast form, in which they are modified by further alloy additions of lead, zinc, and nickel.

Copper Nickel (C 70000 - C 79900; C 96200 - C 96800). Alloy C71500 (Cu-30Ni) has the best general resistance to aqueous corrosion of all the commercially important copper alloys, but C70600 (Cu-3ONi) is often selected because it offers good resistance at lower cost. Both of these alloys, although well suited to applications in the chemical industry, have been most extensively used for condenser tubes and heat exchanger tube in recirculating steam systems. They are superior to coppers and to other copper alloys in resisting acid solutions and are highly resistant to SCC and impingement corrosion.

Nickel Silvers (C 73200 - C 79900; C 97300 - C 97800). The two most common nickel silvers are C75200 (65Cu-18Ni-17Zn) and C77000 (55Cu-18Ni-27Zn). They have good resistance to corrosion in both fresh and salt waters. Primarily because their relatively high nickel contents inhibit dezincification, C75200 and C77000 are usually much more resistant to corrosion in saline solutions than brasses of similar copper content.

Copper-silicon alloys (C 64700 - C66100; C 87300 - C 87900) generally have the same corrosion resistance as copper, but they have higher mechanical properties and superior weldability. These alloys appear to be much more resistant to SCC than the common brasses. Silicon bronzes are susceptible to embrittlement by high pressure steam and should be tested for suitability in the service environment before being specified for components to be used at elevated temperature.

Aluminum bronzes (C 60600 - C 64400; C 95200 - C 95810) containing 5 to 12% Al have excellent resistance to impingement corrosion and high-temperature oxidation. Aluminum bronzes are used for beater bars and for blades in wood pulp machines because of their ability to withstand mechanical abrasion and chemical attack by sulfite solutions.

In the most of practical commercial applications, the corrosion characteristics of aluminum bronzes are primarily related to aluminum content. Alloys with up to 8% Al normally have completely face-centered cubic structures and a good resistance to corrosion attack. As aluminum con tent increases above 8%, a-b duplex structures appear.

Depending on specific environmental conditions, b phase or eutectoid structure in aluminum bronze can be selectively attacked by a mechanism similar to the dezincification of brasses. Proper quench-and-temper treatment of duplex alloys, such as C62400 and C95400, produces a tempered (b structure with reprecipitated acicular a crystals, a combination that is often superior in corrosion resistance to the normal annealed structures.

Nickel-aluminum bronzes are more complex in structure with the introduction of the K phase. Nickel appears to alter the corrosion characteristics of the b phase to provide greater resistance to dealloying and cavitation-erosion in most liquids.

Aluminum bronzes are generally suitable for service in nonoxidizing mineral acids, such as phosphoric H3PO4, sulfuric H2SO4, and HCl; organic acids, such as lactic, acetic CH3COOH, or oxalic; neutral saline solutions, such as sodium chloride NaCI or potassium chloride (KCl); alkalies, such as sodium hydroxide NaOH, potassium hydroxide (KOH), and anhydrous ammonium hydroxide (NH4OH); and various natural waters including sea, brackish, and potable waters. Environments to be avoided include nitric acid HNO3; some metallic salts, such as ferric chloride (FeCl3) and chromic acid (H2CrO4); moist chlorinated hydrocarbons; and moist HN3. Aeration can result in accelerated corrosion in many media that appear to be compatible. 

Material Designation Corresponding Material Symbol
GB/T8890 ASTM B111 BS2871 JIS H3300 DIN 1785
Copper-Nickel BFe10-1-1 C70600 Pipe CN102 C7060 CuNi10Fe1Mn
BFe30-1-1 C71500 Pipe CN107 C7150 CuNi30Mn1Fe
(BFe30-2-2) C71640 CN108 C7164 CuNi30Fe2Mn2
(BFe5-1.5-0.5) C70400
B7
Aluminium Brass HAL77-2 C68700 Tube CZ110 C6870 CuZn20Al2
Admiralty Brass HSn70-1 C44300 Tube CZ111 C4430 CuZn28Sn1
Boric Brass Hsn70-18
HSn70-1 AB
Arsenical Brass H68A CZ126
Brass Tubes H65/H63 C28000/C27200 CZ108 C2800/C2700 CuZn36/CuZn37




TubingChina.com All Rights Reserved

Directory | Standard | Heat | Heat Exchanger | Temperature | Pressure | Corrosion | Hardness | Surface | Properties | Select Stainless Steel | Contact US

Useful Tools:

Stainless Steel Weight Calculator
Metals Weight Calculator
Nickel Alloy Weight Calculator
Copper Brass Alloy Weight Calculator
Copper Brass Alloy Sheet Plate Weight Calculator
Sheet Plate Weight Calculator
Hardness Conversion Calculator
Hardness Conversion Chart
Rockwell Brinell Vickers Shore Hardness Conversion Chart
Conversion Calculator
Length Weight Temperature Volume Pressure Calculater
Pipe Working Pressure Calculator
Pressure Conversion Converter
Round Bar Size Calculator
Gauge Sizes
Sheet Metal Gauge
Pipe Schedule
Nominal Pipe Size
ANSI Pipe Chart
Inch to mm Chart
Stainless Steel Pipe Sizes
Stainless Steel Tubing Sizes Chart
Stainless Steel L H Grade
Stainless Steel Density
Conversion of Stainless Steel
Nickel Alloy Grades Comparison Material Grade Chart Carbon Steel
Structural Steel Comparison Chart



Main Products:

BA Tube | AP Tube
Condenser Tubes Tubing
Stainless Steel Reheater Tube Superheater Tubes
Stainless Steel U bend Tube
Nickel Alloy U bend Tubes
Copper Alloy U Bend Tubes
Heat Exchanger Tube
Super Duplex Pipe
Nickel Alloy Tube
Brass Alloy Tubing
Copper Nickel Alloys Tubes
Stainless Steel Hollow Tube
Stainless Steel Oval Tubing
Stainless Steel Square Tubing
Stainless Steel Rectangular Tubing
Stainless Steel Capillary Tube
Duplex Stainless Steel Pipe
Seamless Stainless Steel Tubing
Corrugated Stainless Steel Tubing
Stainless Steel Twisted Tube
Polishing Stainless Steel Tubing
Stainless Steel Aircraft Tube
Stainless Steel Hydraulic Tubing
Stainless Steel Instrumentation Tubing
Stainless Steel Angle Iron Bar
Stainless Steel Mechanical Tube
Bright Annealing Stainless Tube
Heat resistant Stainless Steel
Stainless Steel Welded Pipe
Extruded Serrated Finned Tubes Integral Finned Tubes / Extruded Aluminum Finned Tubes
Brass Alloys Copper Nickel Alloy Integral Low Finned Tubes
HFW High Frequency Welded Helical Spiral Serrated Finned Tubes
Corrosion Resistant Stainless Steel
Corrosion Resistance Stainless Steel

Stainless Steel Tubing Pipe

304 Stainless Steel Pipe
304L Stainless Steel Pipe
304H Stainless Steel Pipe
304/304L Stainless Steel Tubing
309S Stainless Steel Pipe
310S Stainless Steel Pipe
316L Stainless Steel Tubing
316Ti Stainless Steel Tube
317L Stainless Steel Pipe
321 321H Stainless Steel
347 347H Stainless Steel
904L N08094 Seamless Tubes
17-4 PH 630 UNS S17400 Stainless Steel
253MA S30815 Stainless Steel Tube
S31254 254 SMO Pipe
S31803 Stainless Steel
2205 Duplex Pipe Tubing
S32101 Stainless Steel
S32304 Stainless Steel
2507 Super Duplex Pipe
S32750 Super Duplex Pipe
S32760 Super Duplex Steel
1.4462 Stainless Steel Pipe
ASTM A213 | ASTM A269
ASTM A312 | ASTM A511
ASTM A789 | ASTM A790
ASTM B161 / ASME SB 161 | ASTM B111
EN 10216-5
ASTM A789 ASME SA 789 S31803 S32205 S32101 S32750 S32760 S32304 S31500 S31260 Seamless Tubes
EN 10216-5 1.4462 1.4362 1.4162 1.4410 1.4501 Seamless Tubes
Nickel Alloy Tubing:

UNS N08020 Alloy 20 Tubing
UNS N02200 Alloy 200 Tube
UNS N02201 Alloy 201 Pipe
UNS N04400 Monel 400 Tubing
N06600 Inconel 600 Tube
N06601 Inconel 601 Tubing
N06625 Inconel 625 Tubes
N08800 Incoloy 800 Tube
N08810 Incoloy 800H Tube
N08811 Incoloy 800HT Tubing
UNS N08825 Incoloy 825 Pipe
ASTM B622 N10276 C276 Tubing
ASTM B622 N06022 Hastelloy C-22 Alloy Tubes
C28000 Brass Seamless Tubes C44300 Brass Seamless Tubes
C68700 Brass Seamless Tubes
C70600 Copper Nickel Tubes
C71500 Copper Nickel Tubes
DIN 2391 Seamless Precision Steel Tubes
EN 10305-1 E215 E235 E355 Seamless Precision Steel Tube Tubing Tubes
DIN 2393 St28 St34.2 St37.2 St44.2 St52.3 Welded Precision Steel Tubes
EN 10305-2 E195 E235 E355 Welded Cold Drawn Precision Steel Tube