Zhejiang Guanyu Stainless Steel Tube Co., Ltd  
  Directory | Useful Tool | Sitemap | Contact US | Home

         

Corrosion

Boat Hull Experience





The Pretty Penny is a 10m yacht built in 1979 made of 3mm 90-10 copper-nickel plate and moored for the greater part of its life in the Thames Estuary on the east coast of the UK. The hull remained clean for the first 3 years, but did exhibit some fouling from mainly grasses and some barnacles in later years, particularly 150-300mm below the water line. This fouling was easily removed manually by a light scraping action while still in the water once or twice a year.

The Italian Ministry of the Interior commissioned 4 fire boats with 90-10 copper-nickel roll-bonded clad steel for the submerged parts of the hulls in 1983. The operators of the fire boats were contacted in 1992 by the Nickel Development Institute to find out their performance. No signs of corrosion were evident on any of the boats. Two, however, had shown some signs of fouling having spent a greater part of their lives in closed, stagnant moorings. A third was moored in polluted water showing no signs of biological activity. The fourth boat moored in freely flowing water showed excellent biofouling and corrosion resistance.

The biofouling properties have been confirmed by evaluating more recent boat hull experience. The benefits of copper-nickel alloys in maintaining a smooth hull surface have been obtained by a number of boat building methods .

  • Construction of the hull from copper-nickel alloy plate
  • Construction of the hull from roll-bonded plate
  • Cladding a steel hull with copper-nickel alloy sheet or foil

  • A pilot boat was constructed from clad plate for the Board of Navigation, Finland in 1987. It was intended that the properties of 90-10 copper-nickel should be compared with austenitic stainless steel for use in the Baltic where ice is anticipated. Information in 1994 from Hanko Pilot Station where the pilot boat was located indicated that the vessel was giving good service and the copper-nickel had not been damaged by the ice. The hull had stayed free from fouling with the propeller and the steel front keel being the only places where some mussels had been observed. The welded seams of the copper-nickel sheets were in good condition too.

    The Cupro, a small experimental ship with a 90-10 copper-nickel clad steel hull operated in open waters near docks in Japan; operation time was very low to encourage fouling. Over two years during the evaluation trial, the vessel performed well with minimal corrosion. A very low level of barnacle encrustation was found which was not enough to interfere with the operation of the ship and could be easily removed by hand.

    To assess the viability of welded sheathing, sea trials were carried out initially by sheathing the complete rudder of a 24 knot roll-on/roll-off vessel called the Great Land operating between Washington and Alaska with 90-10 copper-nickel. Although the rudder was subject to turbulent flow and exposed to conditions where ice and silt were present in the seawater, the copper-nickel was found to be very durable.

    A second hull panel trial was on a 16 knot crude oil tanker, the Arco Texasassessing attachment methods and evaluating service performance. Twelve large 90-10 copper-nickel panels were divided into sets of three such that exposure covered fully submerged, alternate wet/dry and splash zone conditions. After two years and seven trips through the Panama Canal, the panels were still intact even though they had experienced several forceful impacts on the sides of the water-way and several had severe scratches. The maximum corrosion rate was measured at 0.013mm/yr and no evidence of fouling was found on the copper-nickel even though it was present on the rest of the steel hull. At the end of the two years, the conventionally coated steel hull had a roughness of 250µm, whereas the corresponding roughness of the copper-nickel was only 53µm. In comparison, the roughness of the copper-nickel rudder after 14 months on the Great Land was consistently lower than 20m, compared with the painted steel hull which averaged 210µm.

    The sheathing of a ship's hull with 90-10 copper-nickel foil has involved the application of adhesive-backed panels (approximately 210mm x 500mm) to the prepared hull, allowing about 15mm overlap. The copper-nickel foil thickness chosen is about 0.15mm thick. The panels are easily cut and manipulated even over the most difficult of contours.

    The bonding system acts as an insulator, and as a barrier to seawater which further protects the hull from the detrimental actions of seawater. An advantage of the system has been that if impact occurs and some panels are damaged, it takes only a short time to repair the sheathing. The system can be applied to hulls on new vessels and as a retrofit.

    An evaluation programme on the performance of the foil sheathing commenced in August1993 with two commercial passenger ferries, the MV Koru and the MV Osprey; both of which are in-service around Auckland Harbour, New Zealand. One vessel is a slow ferry (10 knots), constructed of fibreglass reinforced polymer, which was retro-fitted with copper-nickel sheathing in 1993. The other vessel is a fast catamaran ferry (22 knots) with a FRP hull, which was sheathed during construction in 1994. The older monohull vessel, MV Koru, was kept in reserve most of the time, whereas the catamaran, MV Osprey, has been in service for about 30,000 nautical miles since construction.

    In addition, test programmes involving trials on immersed test panels, commenced over the same time (1993-1999) in Auckland Harbour, Singapore, and Langstone Harbour, UK. The overall trials have confirmed earlier observations about the biofouling properties of copper-nickel but added to the overall experience.

    The biofouling resistance is in line with documented accounts such that slime (microfouling) does occur on copper-nickel but colonisiation of macrofoulers is restricted. If colonisation does eventually occur, it can readily be removed by a wipe or finger pressure, such that a light waterblast will quickly remove any growth. The turnaround time for cleaning the MV Koru on the slip by this method is about 1.5 hours. Removal of fouling from the equivalent painted vessels in the fleet can take up to one day of unproductive time per vessel.

    The experience on MV Koru and the MV Osprey showed that green algae (slime) formed predominantly on the copper-nickel foil at, or just below the waterline on both vessels. In addition more algae were observed on one side of the MV Koru hull which was facing the sun during out-of-service time. Clearly, sunlight affects the rate of growth of the green fouling (photosynthesis), but the higher temperature of the surface seawater on sunny days may also be a factor.

    The green algae were easily removed using rotary brushing underwater, but the growth became firmly attached and more difficult to remove if it dried when the vessel was on the slip-way. It was also observed that small, lightly attached barnacles, grew adjacent to the waterline on the foil when the MV Koru was left moored and unused in the harbour for longer periods of time.

    Seawater velocity also had a substantial effect on the degree of fouling resistance of the copper-nickel foil. Areas of the MV Koru and MV Osprey hulls were almost entirely free of biofouling where the velocity of seawater experienced by the alloy exceeded some undetermined speed. Typically, the stern and waterline tended to show earlier signs of fouling than other hull areas.

    The effect of water velocity can possibly be related to the sloughing of microfouling from the hull surface. Macrofouling on the hulls of both vessels only resulted after microfouling had been well established on the foil during quiet periods.

    Copper Nickel for Seawater Corrosion Resistance and Antifoulin
    90-10 and 70-30 Copper-Nickel Alloys

    Corrosion Resistance

  • The Importance of the Surface
  • General Corrosion Rates
  • Localised Corrosion
  • Velocity Effects
  • Sand Erosion
  • Galvanic Properties
  • Handling Sulfides
  • Ferrous sulfate treatment

  • Biofouling Resistance

  • Ease of Biofouling Removal
  • Reasons for Biofouling Resistance
  • Boat Hull Experience
  • Offshore Sheathing

  • Conclusions



    TubingChina.com All Rights Reserved

    Directory | Standard | Heat | Heat Exchanger | Temperature | Pressure | Corrosion | Hardness | Surface | Properties | Select Stainless Steel | Contact US

    Useful Tools:

    Stainless Steel Weight Calculator
    Metals Weight Calculator
    Nickel Alloy Weight Calculator
    Copper Brass Alloy Weight Calculator
    Copper Brass Alloy Sheet Plate Weight Calculator
    Sheet Plate Weight Calculator
    Hardness Conversion Calculator
    Hardness Conversion Chart
    Rockwell Brinell Vickers Shore Hardness Conversion Chart
    Conversion Calculator
    Length Weight Temperature Volume Pressure Calculater
    Pipe Working Pressure Calculator
    Pressure Conversion Converter
    Round Bar Size Calculator
    Gauge Sizes
    Sheet Metal Gauge
    Pipe Schedule
    Nominal Pipe Size
    ANSI Pipe Chart
    Inch to mm Chart
    Stainless Steel Pipe Sizes
    Stainless Steel Tubing Sizes Chart
    Stainless Steel L H Grade
    Stainless Steel Density
    Conversion of Stainless Steel
    Nickel Alloy Grades Comparison Material Grade Chart Carbon Steel
    Structural Steel Comparison Chart



    Main Products:

    BA Tube | AP Tube
    Condenser Tubes Tubing
    Stainless Steel Reheater Tube Superheater Tubes
    Stainless Steel U bend Tube
    Nickel Alloy U bend Tubes
    Copper Alloy U Bend Tubes
    Heat Exchanger Tube
    Super Duplex Pipe
    Nickel Alloy Tube
    Brass Alloy Tubing
    Copper Nickel Alloys Tubes
    Stainless Steel Hollow Tube
    Stainless Steel Oval Tubing
    Stainless Steel Square Tubing
    Stainless Steel Rectangular Tubing
    Stainless Steel Capillary Tube
    Duplex Stainless Steel Pipe
    Seamless Stainless Steel Tubing
    Corrugated Stainless Steel Tubing
    Stainless Steel Twisted Tube
    Polishing Stainless Steel Tubing
    Stainless Steel Aircraft Tube
    Stainless Steel Hydraulic Tubing
    Stainless Steel Instrumentation Tubing
    Stainless Steel Angle Iron Bar
    Stainless Steel Mechanical Tube
    Bright Annealing Stainless Tube
    Heat resistant Stainless Steel
    Stainless Steel Welded Pipe
    Extruded Serrated Finned Tubes Integral Finned Tubes / Extruded Aluminum Finned Tubes
    Brass Alloys Copper Nickel Alloy Integral Low Finned Tubes
    HFW High Frequency Welded Helical Spiral Serrated Finned Tubes
    Corrosion Resistant Stainless Steel
    Corrosion Resistance Stainless Steel

    Stainless Steel Tubing Pipe

    304 Stainless Steel Pipe
    304L Stainless Steel Pipe
    304H Stainless Steel Pipe
    304/304L Stainless Steel Tubing
    309S Stainless Steel Pipe
    310S Stainless Steel Pipe
    316L Stainless Steel Tubing
    316Ti Stainless Steel Tube
    317L Stainless Steel Pipe
    321 321H Stainless Steel
    347 347H Stainless Steel
    904L N08094 Seamless Tubes
    17-4 PH 630 UNS S17400 Stainless Steel
    253MA S30815 Stainless Steel Tube
    S31254 254 SMO Pipe
    S31803 Stainless Steel
    2205 Duplex Pipe Tubing
    S32101 Stainless Steel
    S32304 Stainless Steel
    2507 Super Duplex Pipe
    S32750 Super Duplex Pipe
    S32760 Super Duplex Steel
    1.4462 Stainless Steel Pipe
    ASTM A213 | ASTM A269
    ASTM A312 | ASTM A511
    ASTM A789 | ASTM A790
    ASTM B161 / ASME SB 161 | ASTM B111
    EN 10216-5
    ASTM A789 ASME SA 789 S31803 S32205 S32101 S32750 S32760 S32304 S31500 S31260 Seamless Tubes
    EN 10216-5 1.4462 1.4362 1.4162 1.4410 1.4501 Seamless Tubes
    Nickel Alloy Tubing:

    UNS N08020 Alloy 20 Tubing
    UNS N02200 Alloy 200 Tube
    UNS N02201 Alloy 201 Pipe
    UNS N04400 Monel 400 Tubing
    N06600 Inconel 600 Tube
    N06601 Inconel 601 Tubing
    N06625 Inconel 625 Tubes
    N08800 Incoloy 800 Tube
    N08810 Incoloy 800H Tube
    N08811 Incoloy 800HT Tubing
    UNS N08825 Incoloy 825 Pipe
    ASTM B622 N10276 C276 Tubing
    ASTM B622 N06022 Hastelloy C-22 Alloy Tubes
    C28000 Brass Seamless Tubes C44300 Brass Seamless Tubes
    C68700 Brass Seamless Tubes
    C70600 Copper Nickel Tubes
    C71500 Copper Nickel Tubes
    DIN 2391 Seamless Precision Steel Tubes
    EN 10305-1 E215 E235 E355 Seamless Precision Steel Tube Tubing Tubes
    DIN 2393 St28 St34.2 St37.2 St44.2 St52.3 Welded Precision Steel Tubes
    EN 10305-2 E195 E235 E355 Welded Cold Drawn Precision Steel Tube