Zhejiang Guanyu Stainless Steel Tube Co., Ltd  
  Directory | Useful Tool | Sitemap | Contact US | Home

         

Standard

ASTM A380 Cleaning Descaling Passivating of Stainless Steel




This covers the standard recommendations and precautions for cleaning, descaling, and passivating of new stainless steel parts, assemblies, equipment, and installed systems. Consideration shall be given in the design of parts, equipment, and systems that will require cleaning to minimize the presence of areas in which dirt, or cleaning solutions might become trapped, and to provide for effective circulation and removal of cleaning solutions.

Recommended cleaning practices shall be followed for welds and weld-joint areas, specially critical applications, installed systems and post-erections. The following shall be used as the basis for cleanness acceptability: Visual inspection; wipe tests; residual pattern; water-break test; free iron test such as water-wetting or drying; high-humidity test; and copper sulfate test. Precision inspection shall be performed by solvent-ring test, black light inspection, atomizer test, and ferroxyl test. Precaution shall always be practiced to minimize iron contamination in reuse of cleaning and pickling solution, in water rinsing, in circulation of cleaning solutions and rinse water, in protection of cleaned surface, for safety, and disposal of used solutions and water.

This practice covers recommendations and precautions for cleaning, descaling, and passivating of new stainless steel parts, assemblies, equipment, and installed systems. These recommendations are presented as procedures for guidance when it is recognized that for a particular service it is desired to remove surface contaminants that may impair the normal corrosion resistance, or result in the later contamination of the particular stainless steel grade, or cause product contamination. For certain exceptional applications, additional requirements which are not covered by this practice may be specified upon agreement between the manufacturer and the purchaser. Although they apply primarily to materials in the composition ranges of the austenitic, ferritic, and martensitic stainless steels, the practices described may also be useful for cleaning other metals if due consideration is given to corrosion and possible metallurgical effects.

Materials shall be precleaned. Scales shall be removed through chemical descaling, acid pickling, and mechanical descaling. Degreasing and general cleaning shall be accomplished by immersion in, swabbing with, or spraying with alkaline, emulsion, chelate, acid, solvent, or detergent cleaners or a combination of these; by vapor degreasing; by ultrasonic using various cleaners; by steam, with or without a cleaner; or by high-pressure water-jetting.

The term passivation is commonly applied to several distinctly different operations or processes relating to stainless steels. In order to avoid ambiguity in the setting of requirements, it may be necessary for the purchaser to define precisely the intended meaning of passivation. Some of the various meanings associated with the term passivation that are in common usage include the following:

Passivation is the process by which a stainless steel will spontaneously form a chemically inactive surface when exposed to air or other oxygen-containing environments. It was at one time considered that an oxidizing treatment was necessary to establish this passive film, but it is now accepted that this film will form spontaneously in an oxygen-containing environment providing that the surface has been thoroughly cleaned or descaled.

Passivation is removal of exogenous iron or iron compounds from the surface of a stainless steel by means of a chemical dissolution, most typically by a treatment with an acid solution that will remove the surface contamination but will not significantly affect the stainlees steel itself. This process is described in a general way in and defined precisely in with further reference to the requirements of and Part II of the table on acid cleaning of steel. Unless otherwise specified, it is this definition of passivation that is taken as the meaning of a specified requirement for passivation.

Passivation is the chemical treatment of a stainless steel with a mild oxidant, such as a nitric acid solution, for the purpose of enhancing the spontaneous formation of the protective passive film. Such chemical treatment is generally not necessary for the formation of the passive film.

Passivation does not indicate the separate process of descaling as described in Section , although descaling may be necessary before passivation can be effective.

This practice does not cover decontamination or cleaning of equipment or systems that have been in service, nor does it cover descaling and cleaning of materials at the mill. On the other hand, some of the practices may be applicable for these purposes. While the practice provides recommendations and information concerning the use of acids and other cleaning and descaling agents, it cannot encompass detailed cleaning procedures for specific types of equipment or installations. It therefore in no way precludes the necessity for careful planning and judgment in the selection and implementation of such procedures.

These practices may be applied when free iron, oxide scale, rust, grease, oil, carbonaceous or other residual chemical films, soil, particles, metal chips, dirt, or other nonvolatile deposits might adversely affect the metallurgical or sanitary condition or stability of a surface, the mechanical operation of a part, component, or system, or contaminate a process fluid. The degree of cleanness required on a surface depends on the application. In some cases, no more than degreasing or removal of gross contamination is necessary. Others, such as food-handling, pharmaceutical, aerospace, and certain nuclear applications, may require extremely high levels of cleanness, including removal of all detectable residual chemical films and contaminants that are invisible to ordinary inspection methods. The term "iron," when hereinafter referred to as a surface contaminant, shall denote free iron.

Attainment of surfaces that are free of iron, metallic deposits, and other contamination depends on a combination of proper design, fabrication methods, cleaning and descaling, and protection to prevent recontamination of cleaned surfaces. Meaningful tests to establish the degree of cleanness of a surface are few, and those are often difficult to administer and to evaluate objectively. Visual inspection is suitable for the detection of gross contamination, scale, rust, and particulates, but may not reveal the presence of thin films of oil or residual chemical films. In addition, visual inspection of internal surfaces is often impossible because of the configuration of the item. Methods are described for the detection of free iron and transparent chemical and oily deposits.

This practice provides definitions and describes good pratices for cleaning, descaling, and passivation of stainless steel parts, but does not provide tests with acceptance criteria to demonstrate that the passivation procedures have been successful. For such tests, it is appropriate to specify one of the practices listed in Specification A 967.

2. Referenced Documents 

ASTM Standards

ASTM A967 Specification for Chemical Passivation Treatments for Stainless Steel Parts
F21 Test Method for Hydrophobic Surface Films by the Atomizer Test
F22 Test Method for Hydrophobic Surface Films by the Water-Break Test

Federal Standard

Fed.Std.No.209e for Clean Room and Work Station Requiring Controlled Environments

austenitic stainless steels; cleaning; corrosion; corrosive service applications; descaling; ferritic stainless steels; martensitic stainless steels; pickling; stainless steels; ICS Number Code 77.140.20 (Steels of high quality)

ASTM A380 nitric acid based passivation treatments

Steel Types
Condition
Treatment
-
-
Code
Temp. (C)
Time (mins)
300 and 400 'series' and precipitation hardening types with 16% or more chromium
annealed, work hardened or thermally hardened with dull, non-reflective surfaces
F
50-70
10-30
20-40
30-60
annealed, work hardened or thermally hardened with machined or polished surfaces
G
50-70
10-30
20-40
30-60
400 'series' and precipitation hardening types with 16% or less chromium
annealed, or thermally hardened with dull, non-reflective surfaces
F
40-55
20-30
20-40
60
annealed, or thermally hardened with machined or polished surfaces
G
50-55
15-30
20-40
30-60
300 and 400 'series' free-machining types
annealed, or thermally hardened with machined or polished surfaces
G
20-50
25-40
K
50-60
10
L
50-60
10

ASTM A380 nitric acid solutions

Code Solution Composition (volume %)
F HNO3 20-50%
G HNO3 20-40%, Na2Cr2O7.2H2O, 2-6 wt %
K HNO3 1-2%, Na2Cr2O7.2H2O, 1-5 wt %
L HNO3 12%, CuSO4.5H2O, 4 wt %

Note: -

HNO3 - nitric acid

Na2Cr2O7.2H2O - sodium dichromate

CuSO4.5H2O - copper sulphate

Related References:


TubingChina.com All Rights Reserved

Directory | Standard | Heat | Heat Exchanger | Temperature | Pressure | Corrosion | Hardness | Surface | Properties | Select Stainless Steel | Contact US

Useful Tools:

Stainless Steel Weight Calculator
Metals Weight Calculator
Nickel Alloy Weight Calculator
Copper Brass Alloy Weight Calculator
Copper Brass Alloy Sheet Plate Weight Calculator
Sheet Plate Weight Calculator
Hardness Conversion Calculator
Hardness Conversion Chart
Rockwell Brinell Vickers Shore Hardness Conversion Chart
Conversion Calculator
Length Weight Temperature Volume Pressure Calculater
Pipe Working Pressure Calculator
Pressure Conversion Converter
Round Bar Size Calculator
Gauge Sizes
Sheet Metal Gauge
Pipe Schedule
Nominal Pipe Size
ANSI Pipe Chart
Inch to mm Chart
Stainless Steel Pipe Sizes
Stainless Steel Tubing Sizes Chart
Stainless Steel L H Grade
Stainless Steel Density
Conversion of Stainless Steel
Nickel Alloy Grades Comparison Material Grade Chart Carbon Steel
Structural Steel Comparison Chart



Main Products:

BA Tube | AP Tube
Condenser Tubes Tubing
Stainless Steel Reheater Tube Superheater Tubes
Stainless Steel U bend Tube
Nickel Alloy U bend Tubes
Copper Alloy U Bend Tubes
Heat Exchanger Tube
Super Duplex Pipe
Nickel Alloy Tube
Brass Alloy Tubing
Copper Nickel Alloys Tubes
Stainless Steel Hollow Tube
Stainless Steel Oval Tubing
Stainless Steel Square Tubing
Stainless Steel Rectangular Tubing
Stainless Steel Capillary Tube
Duplex Stainless Steel Pipe
Seamless Stainless Steel Tubing
Corrugated Stainless Steel Tubing
Stainless Steel Twisted Tube
Polishing Stainless Steel Tubing
Stainless Steel Aircraft Tube
Stainless Steel Hydraulic Tubing
Stainless Steel Instrumentation Tubing
Stainless Steel Angle Iron Bar
Stainless Steel Mechanical Tube
Bright Annealing Stainless Tube
Heat resistant Stainless Steel
Stainless Steel Welded Pipe
Extruded Serrated Finned Tubes Integral Finned Tubes / Extruded Aluminum Finned Tubes
Brass Alloys Copper Nickel Alloy Integral Low Finned Tubes
HFW High Frequency Welded Helical Spiral Serrated Finned Tubes
Corrosion Resistant Stainless Steel
Corrosion Resistance Stainless Steel

Stainless Steel Tubing Pipe

304 Stainless Steel Pipe
304L Stainless Steel Pipe
304H Stainless Steel Pipe
304/304L Stainless Steel Tubing
309S Stainless Steel Pipe
310S Stainless Steel Pipe
316L Stainless Steel Tubing
316Ti Stainless Steel Tube
317L Stainless Steel Pipe
321 321H Stainless Steel
347 347H Stainless Steel
904L N08094 Seamless Tubes
17-4 PH 630 UNS S17400 Stainless Steel
253MA S30815 Stainless Steel Tube
S31254 254 SMO Pipe
S31803 Stainless Steel
2205 Duplex Pipe Tubing
S32101 Stainless Steel
S32304 Stainless Steel
2507 Super Duplex Pipe
S32750 Super Duplex Pipe
S32760 Super Duplex Steel
1.4462 Stainless Steel Pipe
ASTM A213 | ASTM A269
ASTM A312 | ASTM A511
ASTM A789 | ASTM A790
ASTM B161 / ASME SB 161 | ASTM B111
EN 10216-5
ASTM A789 ASME SA 789 S31803 S32205 S32101 S32750 S32760 S32304 S31500 S31260 Seamless Tubes
EN 10216-5 1.4462 1.4362 1.4162 1.4410 1.4501 Seamless Tubes
Nickel Alloy Tubing:

UNS N08020 Alloy 20 Tubing
UNS N02200 Alloy 200 Tube
UNS N02201 Alloy 201 Pipe
UNS N04400 Monel 400 Tubing
N06600 Inconel 600 Tube
N06601 Inconel 601 Tubing
N06625 Inconel 625 Tubes
N08800 Incoloy 800 Tube
N08810 Incoloy 800H Tube
N08811 Incoloy 800HT Tubing
UNS N08825 Incoloy 825 Pipe
ASTM B622 N10276 C276 Tubing
ASTM B622 N06022 Hastelloy C-22 Alloy Tubes
C28000 Brass Seamless Tubes C44300 Brass Seamless Tubes
C68700 Brass Seamless Tubes
C70600 Copper Nickel Tubes
C71500 Copper Nickel Tubes
DIN 2391 Seamless Precision Steel Tubes
EN 10305-1 E215 E235 E355 Seamless Precision Steel Tube Tubing Tubes
DIN 2393 St28 St34.2 St37.2 St44.2 St52.3 Welded Precision Steel Tubes
EN 10305-2 E195 E235 E355 Welded Cold Drawn Precision Steel Tube