Zhejiang Guanyu Stainless Steel Tube Co., Ltd  
  Directory | Useful Tool | Sitemap | Contact US | Home

         

Material

Heat Treatment of 310S Stainless Steel




The primary reason for annealing these alloys is to produce a recrystalized microstructure with a uniform grain size and for dissolving detrimental chromium carbide precipitates. To ensure complete annealing, pieces should be held in the range 2050-2150°F (1120-1175°C) for approximately 30 minutes (time at temperature) per inch of section thickness. This is a general recommendation only – specific cases may require further investigation. When properly annealed, these grades are primarily austenitic at room temperature. Some small quantities of ferrite may be present.

Oxide scale formation is inevitable during air annealing of Alloys 309/309S and 310/310S. The scale that forms is generally rich in chromium and relatively adherent. The annealing scale generally must be removed prior to further processing or service. There are two typical methods for removing scale – mechanical and chemical. A combination of surface blasting prior to chemical scale removal is generally effective at removing all but the most tightly adherent scale. Silica sand or glass beads are a good choice for the blasting media. Iron or steel shot can also be used but will lead to embedded free iron in the surface which may then result in surface rusting or discoloration unless the surface is subsequently pickled.

Chemical removal of scale is generally performed with mixed nitric-hydrofluoric acids. The proper bath makeup and process temperature combination depends on the situation. A typical pickling bath used consists of 5-15% HNO3 (65% initial strength) and 1/2 -3% HF in aqueous solution. Higher concentrations of hydrofluoric acid lead to more aggressive scale removal.

Bath temperature generally range from ambient to about 140°F (50°C). Higher temperature result in faster descaling but may attack grain boundaries aggressively, resulting in surface grooving. Acid pickling must be followed with a thorough water wash to remove all traces of pickling acids. Drying should then be used to avoid spotting and staining.

As noted, Alloys 309/309S and 310/310S consist solely of austenite at room temperature – they cannot be hardened through heat treatment. Higher mechanical strengths are attainable via cold or warm working, but these grades are generally not available in such conditions. The higher tensile strength and yield strength obtainable through cold working not followed by full annealing are not stable at the higher temperatures at which these alloys are often used. Creep properties in particular may be adversely affected by the use of cold worked material at elevated temperatures.

Back to 310S

General Properties
Chemical Composition
Aqueous Corrosion Resistance
Physical Properties
Typical Short-Term Mechanical Properties
Elevated Temperature Oxidation Resistance
Heat Treatment
Fabrication Characteristics

Application
Welding
Other Forms of Degradation


Stainless Steel Tube/Pipe/Tubing, Nickel Alloy Tubing, Brass Alloy Tubing, Copper Nickel Pipe Material Grades


TubingChina.com All Rights Reserved

Technical Resources | Standard | Heat | Heat Exchanger | Temperature | Pressure | Corrosion | Hardness | Surface | Properties | Select Stainless Steel

Useful Tools:

Stainless Steel Weight Calculator
Metals Weight Calculator
Nickel Alloy Weight Calculator
Copper Brass Alloy Weight Calculator
Copper Brass Alloy Sheet Plate Weight Calculator
Sheet Plate Weight Calculator
Hardness Conversion Calculator
Hardness Conversion Chart
Rockwell Brinell Vickers Shore Hardness Conversion Chart
Conversion Calculator
Length Weight Temperature Volume Pressure Calculater
Pipe Working Pressure Calculator
Pressure Conversion Converter
Round Bar Size Calculator
Gauge Sizes
Sheet Metal Gauge
Pipe Schedule
Nominal Pipe Size
ANSI Pipe Chart
Inch to mm Chart
Stainless Steel Pipe Sizes
Stainless Steel Tubing Sizes Chart
Stainless Steel L H Grade
Stainless Steel Density
Conversion of Stainless Steel
Nickel Alloy Grades Comparison Material Grade Chart Carbon Steel
Structural Steel Comparison Chart



Main Products:

BA Tube | AP Tube
Condenser Tubes Tubing
Stainless Steel Reheater Tube Superheater Tubes
Stainless Steel U bend Tube
Nickel Alloy U bend Tubes
Copper Alloy U Bend Tubes
Stainless Steel Heat Exchanger Tube
Super Duplex Pipe
Nickel Alloy Tube
Brass Alloy Tubing
Copper Nickel Alloys Tubes
Stainless Steel Hollow Tube
Stainless Steel Oval Tubing
Stainless Steel Square Tubing
Stainless Steel Rectangular Tubing
Stainless Steel Capillary Tube
Duplex Stainless Steel Pipe
Seamless Stainless Steel Tubing
Corrugated Stainless Steel Tubing
Stainless Steel Twisted Tube
Polishing Stainless Steel Tubing
Stainless Steel Aircraft Tube
Stainless Steel Hydraulic Tubing
Stainless Steel Instrumentation Tubing
Stainless Steel Angle Iron Bar
Stainless Steel Mechanical Tube
Bright Annealing Stainless Tube
Heat resistant Stainless Steel
Stainless Steel Welded Pipe
Extruded Serrated Finned Tubes Integral Finned Tubes / Extruded Aluminum Finned Tubes
Brass Alloys Copper Nickel Alloy Integral Low Finned Tubes
HFW High Frequency Welded Helical Spiral Serrated Finned Tubes
Corrosion Resistant Stainless Steel
Corrosion Resistance Stainless Steel

Stainless Steel Tubing Pipe

304 Stainless Steel Pipe
304L Stainless Steel Pipe
304H Stainless Steel Pipe
304/304L Stainless Steel Tubing
309S Stainless Steel Pipe
310S Stainless Steel Pipe
316L Stainless Steel Tubing
316Ti Stainless Steel Tube
317L Stainless Steel Pipe
321 321H Stainless Steel
347 347H Stainless Steel
904L Tubing N08094 Seamless Tubes
17-4 PH 630 UNS S17400 Stainless Steel
253MA S30815 Stainless Steel Tube
S31254 254 SMO Pipe
S31803 Stainless Steel
S32205 Stainless Steel
S32101 Stainless Steel
S32304 Stainless Steel
S32750 Stainless Steel
S32760 Super Duplex Steel
1.4462 Stainless Steel Pipe
ASTM A213 | ASTM A269
ASTM A312 | ASTM A511
ASTM A789 | ASTM A790
ASTM B161 / ASME SB 161 | ASTM B111
EN 10216-5
ASTM A789 ASME SA 789 S31803 S32205 S32101 S32750 S32760 S32304 S31500 S31260 Seamless Tubes
EN 10216-5 1.4462 1.4362 1.4162 1.4410 1.4501 Seamless Tubes
Copper Nickel Alloy Tubing:

UNS N08020 Nickel Alloy 20 Tubing
UNS N02200 Nickel Alloy 200 Tube
UNS N02201 Nickel Alloy 201 Pipe
Monel 400 Pipe
N06600 600 2.4816 Nickel Alloy Pipe
N06601 601 2.4851 Nickel Alloy Tubing
N06625 625 2.4856 Nickel Alloy Tubes
N08800 800 Nickel Alloy Tubes
N08810 800H UNS N08810 Nickel Alloy Tubes
N08811 800HT Nickel Alloy Tubes
UNS N08825 825 2.4858 Nickel Alloy Seamless Pipes
ASTM B622 N10276 Nickel Alloy Seamless Tubing
ASTM B622 N06022 Hastelloy C-22 Nickel Alloy Tubes
C28000 Brass Seamless Tubes C44300 Brass Seamless Tubes
C68700 Brass Seamless Tubes
C70600 Copper Nickel Tubes
C71500 Copper Nickel Tubes
DIN 2391 Seamless Precision Steel Tubes
EN 10305-1 E215 E235 E355 Seamless Precision Steel Tube Tubing Tubes
DIN 2393 St28 St34.2 St37.2 St44.2 St52.3 Welded Precision Steel Tubes
EN 10305-2 E195 E235 E355 Welded Cold Drawn Precision Steel Tube