ASTM A653 Galvanized Steel
ASTM A653 Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process covers steel sheet, zinc-coated (galvanized) or zinc-iron alloy-coated (galvannealed) by the hot-dip process in coils and cut lengths. The material is available in several designations as follows: commercial steel, forming steel, deep drawing steel, extra deep drawing steel, structural steel, high strength low alloy steel, high strength low alloy steel with improved formability, solution hardened steel, and bake hardenable steel.
Structural steel, high strength low alloy steel, solution hardened steel, and bake hardenable steel are available in several grades based on mechanical properties. Yield strength, elongation, and bending properties of the steel shall be determined. A bend testing shall be done to the coated sheets.
This specification covers steel sheet, zinc-coated (galvanized) or zinc-iron alloy-coated (galvannealed) by the hot-dip process in coils and cut lengths. The product is produced in various zinc or zinc-iron alloy-coating weights [masses] or coating designations as shown in Table 1 and in Table S2.1. Product furnished under this specification shall conform to the applicable requirements of the latest issue of Specification ASTM A924/A924M, unless otherwise provided herein.
The product is available in a number of designations, grades and classes in four general categories that are designed to be compatible with different application requirements.
Steel with mandatory chemical requirements and typical mechanical properties. Steel with mandatory chemical requirements and mandatory mechanical properties. Steel with mandatory chemical requirements and mandatory mechanical properties that are achieved through solid-solution or bake hardening.
This specification is applicable to orders in either inch-pound units (as A653) or SI units (as A653M). Values in inch-pound and SI units are not necessarily equivalent. Within the text, SI units are shown in brackets. Each system shall be used independently of the other.
The text of this specification references notes and footnotes that provide explanatory material. These notes and footnotes, excluding those in tables and figures, shall not be considered as requirements of this specification.
Unless the order specifies the “M” designation (SI units), the product shall be furnished to inch-pound units.
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
TABLE 1 Weight [Mass] of Coating RequirementsA, B, C
Note— Use the information provided in 8.1.3 to obtain the approximate coating thickness from the coating weight [mass].
|
Minimum RequirementD |
Triple-Spot Test (TST)
|
Single-Spot Test (SST) |
Inch-Pound Units
|
Type |
Coating Designation |
TST
Total Both Sides, oz/ft2
|
TST
One Side, oz/ft2
|
SST
Total Both Sides, oz/ft2
|
Zinc |
G01 |
no minimum |
no minimum |
no minimum |
|
G30 |
0.30 |
0.10 |
0.25 |
|
G40 |
0.40 |
0.12 |
0.30 |
|
G60 |
0.60 |
0.20 |
0.50 |
|
G90 |
0.90 |
0.32 |
0.80 |
|
G100 |
1.00 |
0.36 |
0.90 |
|
G115 |
1.15 |
0.40 |
1.00 |
|
G140 |
1.40 |
0.48 |
1.20 |
|
G165 |
1.65 |
0.56 |
1.40 |
|
G185 |
1.85 |
0.64 |
1.60 |
|
G210 |
2.10 |
0.72 |
1.80 |
|
G235 |
2.35 |
0.80 |
2.00 |
|
G300 |
3.00 |
1.04 |
2.60 |
|
G360 |
3.60 |
1.28 |
3.20 |
Zinc-iron alloy |
A01 |
no minimum |
no minimum |
no minimum |
|
A25 |
0.25 |
0.08 |
0.20 |
|
A40 |
0.40 |
0.12 |
0.30 |
|
A60 |
0.60 |
0.20 |
0.50 |
SI Units
|
Type |
Coating Designation
|
TST
Total Both Sides, g/m2
|
TST
One Side, g/m2
|
SST
Total Both Sides, g/m2
|
Zinc |
Z001 |
no minimum |
no minimum |
no minimum |
|
Z90 |
90 |
30 |
75 |
|
Z120 |
120 |
36 |
90 |
|
Z180 |
180 |
60 |
150 |
|
Z275 |
275 |
94 |
235 |
|
Z305 |
305 |
110 |
275 |
|
Z350 |
350 |
120 |
300 |
|
Z450 |
450 |
154 |
385 |
|
Z500 |
500 |
170 |
425 |
|
Z550 |
550 |
190 |
475 |
|
Z600 |
600 |
204 |
510 |
|
Z700 |
700 |
238 |
595 |
|
Z900 |
900 |
316 |
790 |
|
Z1100 |
1100 |
390 |
975 |
Zinc-iron alloy |
ZF001 |
no minimum |
no minimum |
no minimum |
|
ZF75 |
75 |
24 |
60 |
|
ZF120 |
120 |
36 |
90 |
|
ZF180 |
180 |
60 |
150 |
A The coating designation is the term by which the minimum triple spot, total both sides coating weight [mass] is specified. Because of the many variables and changing conditions that are characteristic of continuous hot-dip coating lines, the zinc or zinc-iron alloy coating is not always evenly divided between the two surfaces of a coated sheet; nor is it always evenly distributed from edge to edge. However, the minimum triple-spot average coating weight (mass) on any one side shall not be less than 40 % of the single-spot requirement.
B As it is an established fact that the atmospheric corrosion resistance of zinc or zinc-iron alloy-coated sheet products is a direct function of coating thickness (weight (mass)), the selection of thinner (lighter) coating designations will result in almost linearly reduced corrosion performance of the coating. For example, heavier galvanized coatings perform adequately in bold atmospheric exposure whereas the lighter coatings are often further coated with paint or a similar barrier coating for increased corrosion resistance. Because of this relationship, products carrying the statement “meet ASTM A653/A653M requirement” should also specify the particular coating designation.
C International Standard, ISO 3575, continuous hot-dip zinc-coated carbon steel sheet contains Z100 and Z200 designations and does not specify a ZF75 coating.
D No minimum means that there are no established minimum requirements for triple- and single-spot tests.
Galvanized steel is simply hot rolled steel to which a zinc coating has been applied for protection against corrosion.
ASTM A653 Mild (low-carbon) Hot Dipped Galvanized Steel |
Minimum Properties |
Ultimate Tensile Strength, psi |
58,000 - 79,800 |
Yield Strength, psi |
36,300 |
Elongation |
20.0% |
Chemistry |
Iron (Fe) |
99% |
Carbon (C) |
0.26% |
Manganese (Mn) |
0.75% |
Copper (Cu) |
0.2% |
Phosphorus (P) |
0.04% max |
Sulfur (S) |
0.05% max |
1008 | 1010 | 1015 | 1018 | 1020 | 1025 | 1035 | 1040 | 1045 | 1050 | 1117 | 1141 | 1144 | 12L14 | 1215 | 4140 | 4150 | 4340 | 8620 | A36 | A653 | A513 | Mechanical Properties | Physical Properties | Carbon Steel Pipe Standards | ASTM A53 B Working Pressure | ASTM A106 B Pressure Temperature Rating | Carbon Steel | Steel Alloy Designations | Chemical Composition Analysis of Carbon Steel Table | UNS Number G1 | UNS Number G2 | UNS Number G3 | UNS Number G4 | UNS Number G5 | UNS Number G6 | UNS Number G7
Pipes Tubes Plates Bars Square Tubes Weight Calculation Calculator
Pipe Working Pressure Calculation
Conversion Calculator Calculation-Pressure|Weight|Temperature|Volume|Length
Conversion Table-Pressure|Stress|Mass|Length|Temperature|SI Prelxes
Metals Weight Calculator-Aluminum|Brass|Bronze|Copper|Magnesium|Plastic|Nickel|Stainless Steel|Steel|Titanium|Zinc
|
Germany |
China |
England |
France |
Italy |
Belgium |
Swed |
Spain |
Japan |
USA |
Material No. |
DIN |
GB |
BS |
EN |
AFNOR |
UNI |
NBN |
SS |
UNE |
JIS |
AISI |
1.0401 |
C15 |
15 |
080M15 |
- |
CC12 |
C15C16 |
- |
1350 |
F.111 |
- |
1015 |
1.0402 |
C22 |
20 |
050A20 |
2C |
CC20 |
C20C21 |
C25-1 |
1450 |
F.112 |
- |
1020 |
1.0501 |
C35 |
35 |
060A35 |
- |
CC35 |
C35 |
C35-1 |
1550 |
F.113 |
- |
1035 |
1.0503 |
C45 |
45 |
080M40 |
- |
CC45 |
C45 |
C45-1 |
1650 |
F.114 |
- |
1045 |
1.0535 |
C55 |
55 |
070M55 |
- |
- |
C55 |
C55-1 |
1655 |
- |
- |
1055 |
1.0601 |
C60 |
60 |
080A62 |
43D |
CC55 |
C60 |
C60-1 |
- |
- |
- |
1060 |
1.7015 |
9SMn28 |
Y15 |
230M07 |
- |
S250 |
CF9SMn28 |
- |
1912 |
11SMn28 |
SUM22 |
1213 |
1.0718 |
9SMnPb28 |
- |
- |
- |
S250Pb |
CF9MnPb28 |
- |
1914 |
11SMnPb28 |
SUM22L |
12L13 |
1.0722 |
10SPb20 |
- |
- |
- |
10PbF2 |
CF10Pb20 |
- |
- |
10SPb20 |
- |
- |
1.0726 |
35S20 |
- |
212M36 |
8M |
35MF4 |
- |
- |
1957 |
F210G |
- |
1140 |
1.0736 |
9SMn36 |
Y13 |
240M07 |
1B |
S300 |
CF9SMn36 |
- |
- |
12SMn35 |
- |
1215 |
1.0737 |
9SMnPb36 |
- |
- |
- |
S300Pb |
CF9SMnPb36 |
- |
1926 |
12SMnP35 |
- |
12L14 |
1.0904 |
55Si9 |
55Si2Mn |
250A53 |
45 |
55S7 |
55Si8 |
55Si7 |
2085 |
56Si7 |
- |
9255 |
1.0961 |
60SiCr7 |
- |
- |
- |
60SC7 |
60SiCr8 |
60SiCr8 |
- |
60SiCr8 |
- |
9262 |
1.1141 |
Ck15 |
15 |
080M15 |
32C |
XC12 |
C16 |
C16-2 |
1370 |
C15K |
S15C |
1015 |
1.1157 |
40Mn4 |
40Mn |
150M36 |
15 |
35M5 |
- |
- |
- |
- |
- |
1039 |
1.1158 |
Ck25 |
25 |
- |
- |
- |
- |
C25-2 |
- |
- |
S25C |
1025 |
1.1167 |
36Mn5 |
35Mn2 |
- |
- |
40Mn5 |
- |
- |
2120 |
36Mn5 |
SMn438 |
1335 |
1.1170 |
28Mn6 |
30Mn |
150M28 |
14A |
20M5 |
C28Mn |
28Mn6 |
- |
- |
SCMn1 |
1330 |
1.1183 |
Cf35 |
35Mn |
060A35 |
- |
XS38TS |
C36 |
C36 |
1572 |
- |
S35C |
1035 |
1.1191 |
45 |
Ck45 |
080M46 |
- |
XC42 |
C45 |
C45-2 |
1672 |
C45K |
S45C |
1045 |
1.1203 |
Ck55 |
55 |
070M55 |
- |
XC45 |
C50 |
C55-2 |
- |
C55K |
S55C |
1055 |
1.1213 |
Cf53 |
50 |
060A52 |
- |
XC48TS |
C53 |
C53 |
1674 |
- |
S50C |
1050 |
1.1221 |
Ck60 |
60Mn |
080A62 |
43D |
XC60 |
C60 |
C60-2 |
1678 |
- |
S58C |
1060 |
1.1274 |
Ck101 |
- |
060A96 |
- |
- |
- |
- |
1870 |
- |
SUP4 |
1095 |
1.3401 |
X120Mn12 |
- |
Z120M12 |
- |
X120M12 |
XG120Mn12 |
- |
- |
X120Mn12 |
SCMn
H/1 |
- |
1.3505 |
100Cr6 |
Gr15
45Gr |
534A99 |
31 |
100C6 |
100Cr6 |
- |
2258 |
F.131 |
SUJ2 |
52100 |
1.5415 |
15Mo3 |
- |
1501-240 |
- |
15D3 |
16Mo3KW |
16Mo3 |
2912 |
16Mo3 |
- |
ASTM A20Gr.A |
Structural Steel Comparison Table 2 |
Germany |
China |
England |
France |
Italy |
Belgium |
Swe |
Spain |
Material No. |
DIN |
GB |
BS |
EN |
AFNOR |
UNI |
NBN |
SS |
UNE |
1.5426 |
16Mo5 |
- |
1503-245-420 |
- |
- |
16Mo5 |
16Mo5 |
- |
16Mo5 |
1.5622 |
14Ni6 |
- |
- |
- |
16N6 |
14Ni6 |
18Ni6 |
- |
15Ni6 |
1.5662 |
X8Ni9 |
- |
1501-509;510 |
- |
- |
X10Ni9 |
10Ni36 |
- |
XBNi09 |
1.5680 |
12Ni19 |
- |
- |
- |
Z18N5 |
- |
12Ni20 |
- |
- |
1.5710 |
36NiCr6 |
- |
640A35 |
111A |
35NC6 |
- |
- |
- |
- |
1.5732 |
14NiCr10 |
- |
- |
- |
14NC11 |
16NiCr11 |
- |
- |
15NiCr11 |
1.5752 |
14NiCr14 |
- |
655M13;655A12 |
36A |
12NC15 |
- |
13NiCr12 |
- |
- |
1.6511 |
36CrNiMo4 |
- |
816M40 |
110 |
40NCD3 |
38CrNiMo4 |
- |
- |
35CrNiMo4 |
1.6523 |
21NiCrMo2 |
- |
850M20 |
362 |
20NCD2 |
20NiCrMo2 |
- |
2503 |
20NiCrMo2 |
1.6546 |
40NiCrMo2 |
- |
311-Type7 |
- |
- |
40NiCrMo2 |
40NiCrMo2 |
- |
40NiCrMo2 |
1.6582 |
34CrNiMo6 |
40CrNiMoA |
817M40 |
24 |
35NCD6 |
35CrNiMo6 |
35CrNiMo6 |
2541 |
- |
1.6587 |
17CrNiMo6 |
- |
820A16 |
- |
18NCD6 |
- |
17CrNiMo7 |
- |
14CrNiMo13 |
1.7015 |
15Cr3 |
15Cr |
523M15 |
- |
12C3 |
- |
15Cr2 |
- |
- |
1.7033 |
34Cr4 |
35Cr |
530A32 |
18B |
32C4 |
34Cr4(KB) |
34Cr4 |
- |
35Cr4 |
1.7035 |
41Cr4 |
40Cr |
530M40 |
18 |
42C4 |
41Cr4 |
42Cr4 |
- |
42Cr4 |
1.7045 |
42Cr4 |
40Cr |
- |
- |
- |
- |
- |
2245 |
42Cr4 |
1.7131 |
16MnCr15 |
18CrMn |
(527M20) |
- |
16MC5 |
16MnCr15 |
16MnCr15 |
2511 |
16MnCr15 |
1.7176 |
55Cr3 |
20CrMn |
527A60 |
48 |
55C3 |
- |
55Cr3 |
- |
- |
1.7218 |
25CrMo4 |
30CrMn |
1717CDS110 |
- |
25CD4 |
25CrMo4 |
25CrMo4 |
2225 |
55Cr3 |
1.7220 |
34CrMo4 |
35CrMo |
708A37 |
19B |
35CD4 |
35CrMo4 |
34CrMo4 |
2234 |
34CrMo4 |
1.7223 |
41CrMo4 |
40CrMoA |
708M40 |
19A |
42CD4TS |
41CrMo4 |
41CrMo4 |
2244 |
41CrMo4 |
1.7225 |
42CrMo4 |
42CrMo;
42CrMnMo |
708M40 |
19A |
42CD4 |
42CrMo4 |
42CrMo4 |
2244 |
42CrMo4 |
1.7262 |
15CrMo5 |
- |
- |
- |
12CD4 |
- |
- |
2216 |
12CrMo4 |
1.7335 |
13CrMo44 |
- |
1501-620Gr.27 |
- |
15CD3.5;
15CD4.5 |
14CrMo44 |
14CrMo45 |
- |
14CrMo45 |
1.7361 |
32CrMo12 |
- |
722M24 |
40B |
30CD12 |
32CrMo12 |
32CrMo12 |
2240 |
F.124.A |
1.7380 |
10CrMo910 |
- |
1501-622Gr.31;45 |
- |
12CD9;10 |
12CrMo9,10 |
- |
2218 |
TU.H |
1.7715 |
14MoV63 |
- |
1503-660-440 |
- |
- |
- |
13MoCrV6 |
- |
13MoCrV6 |
1.8159 |
50CrV4 |
50CrVA |
735A50 |
47 |
50CV4 |
50CrV4 |
50CrV4 |
2230 |
51CrV4 |
1.8509 |
41CrAlMo7 |
- |
905M39 |
41B |
40CAD6,12 |
41CrAlMo7 |
41CrAlMo7 |
2940 |
41CrAlMo7 |
1.8523 |
39CrMoV139 |
- |
897M39 |
40C |
- |
36CrMoV12 |
36CrMoV13 |
- |
- |
|