|
|
About Hot-Dip Galvanizing
Using zinc to protect steel from corrosion (hot-dip galvanizing) is a 150-year-old practice!
Corrosion is caused by the inherent tendency of metals, when subjected to air and moisture, to revert to their original earthly forms, usually an ore state. They do this through a chemical or electrochemical reaction with the environment.
Galvanizer’s kettles are set at temperature ranging between 815 F and 850 F (435 C to 454 C).
A galvanizer knows that a piece of steel should be immersed for a specific amount of time in order for the metallurgical reaction between zinc and iron to reach completion. The completion of the metallurgical reaction is observed when bubbling of the molten zinc in the kettle stops. At this point, the galvanizing is complete and the steel is removed from the kettle to cool.
Galvanizers can hot-dip galvanize a piece of steel that is larger than the kettle dimensions; it’s called progressive dipping.
Zinc seals the underlying steel from contact with its environment. If the steel is exposed to the elements due to mechanical damage, the surrounding zinc corrodes sacrificially, protection the underlying steel from corrosive attack.
The zinc coating on galvanized steel is uniform: inside, outside, corners and edges.
The hot-dip galvanized reinforcing steel bond with concrete is at least as great as the bond of bare steel to concrete.
When the Brooklyn Bridge was built, over 14,500 miles of hot-dip galvanized wire were used for its four main cables. Over 100 years later when the bridge underwent massive rehabilitation, the hot-dip galvanized wire was in excellent condition.
Hot-dip galvanized steel lasts longer today than it did 20 years ago. Because of environmental laws, our air is cleaner and less contaminated with corrosive emissions.
A reddish-brown staining infrequently develops on the surface of a newly galvanized piece of steel that is comprised entirely of intermetallic layers. The steel is not rusting; there is just a very small amount of iron in the zinc-iron alloy layers that is oxidizing, causing the staining to occur. This does not cause any adverse effects on the corrosion performance of the galvanized steel.
Corrosion annually costs the U.S. economy 3.2 percent of the gross national product, over $279 billion. Indirect costs to the public could raise the percentage to as much as 6 percent. Some indirect costs of corrosion are: lost productivity due to traffic delays, accidents caused by corroded hand and guardrails, excessive use of nature’s raw materials and energy to replace corroded steel.
Based on a study by NACE International (The Corrosion Society), members of Congress, and the Department of Transportation (DOT), better corrosion management can be achieved using preventive strategies at every level of involvement (owner, operator, user, government, Federal regulators, and general public).
Related References:
1. About Zinc
2. About Hot-Dip Galvanizing
3. HDG Hot-Dip Galvanizing Last Time
4. Cost of Galvanized Steel
5. Selection of Zinc Coatings
6. Zinc Coatings-Galvanized|Electrogalvanized|Galvanneal|Galfan
7. Physical Properties of HDG Hot-Dip Galvanized
8. HDG Hot-Dip Galvanized Abrasion Resistance Resistance to Mechanical Damage
9. Hot-Dip Galvanized Corrosion Protection and the Zinc Patina
10. HDG Hot-Dip Galvanized High Temperature Exposure
11. HDG Hot-Dip Galvanized Surface Reflectivity
12. HDG Hot Dip Galvanized Coating Structure
13. HDG Hot Dip Galvanized Bond Strength
14. HDG Hot Dip Galvanized Coating Uniformity
15. HDG Hot Dip Galvanized Coating Thickness
16. Powder Coating Hot Dipped Galvanized Steel
17. Painting Hot-Dippped Galvanized Steel
18. Painting Hot-Dipped Galvanized Steel Surface Preparation
19. Surface Coatings for Corrosion
20. Hot-Dip Galvanizing Surface Preparation
21. Hot-Dip Galvanizing Galvanizing
22. Hot-Dip Galvanizing Inspection
23. Characteristics of Zinc
24. Hot-Dip Galvanizing Performance in Atmosphere
25. Hot-Dip Galvanizing in Atmosphere Time to First Maintenance
26. Hot-Dip Galvanizing Performance in Soil
27. Soil Corrosion Data for Corrugated Steel Pipe
28. Hot-Dip Galvanizing Performance in Water
29. Cause of Zinc Corrosion
30. Corrosion of Zinc Coated Steel in Selected Natural Fresh Water
31. Corrosion of Zinc and Zinc Coated Steel in Sea Water
32. Corrosion of Zinc Coating in Industrial and Domestic Water
33. Concrete Corrosion of Hot Dip Galvanizing
34. Concrete corrosion resistance of hot dip galvanized reinforcing
35. Removal of Forms Concrete Corrosion
36. Zinc Reaction in Concrete Corrosion
37. Concrete Corrosion References
38. Hot-Dip Galvanizing Performance in Chemical Solutions
39.Hot-Dip Galvanizing Performance in Contact with Other Metals
40. Hot-Dip Galvanizing Performance in contact with Treated Wood
41. Hot-Dip Galvanizing Performance in contact with Food
42. Hot-Dip Galvanizing Performance in Extreme Temperature
|
|
|