Hot-Dip Galvanizing Performance in Water
The varieties of water throughout the world differ to the extent that predicting corrosion rates is very difficult for all coatings. Many parameters affect corrosion of metals in a water environment , including pH level, oxygen content, water temperature, water climate and tide conditions, to name a few. Despite the difficulty of predicting corrosion, it is important to note that galvanized coatings on steel used in submersed applications is still one of the best methods of corrosion protection. It is common for hot-dip galvanized steel to perform flawlessly in harsh water environments such as seawater for eight to 12 years.
The first step in deciding whether galvanized steel is the right coating for your application is to determine what type of water will be used. Water can be divided into a number of different types; pure water (e.g., distilled water or de-ionized water), natural fresh water, potable water (treated drinking water), or seawater. Hard water and soft water also cause corrosion to different degrees, as do hot and cold water.
View corrosion data for zinc/hot-dip galvanizing in specific water environments:
Pure Water
Pure water, also known as de-ionized or distilled water, is usually very corrosive to zinc coatings due to the presence of dissolved oxygen and carbon dioxide. Corrosion rates of steel increase with aeration of pure water; dissolved oxygen in pure water is five to ten times more aggressive than carbonic acid.
Natural Fresh Water
Fresh water environments have two major constituents for categorizing corrosion potential: hard and soft water. Carbonates and bicarbonates, present in some concentration in fresh water, tend to deposit protective films on the zinc surface, helping to stifle corrosion. Carbonates subdue the corrosion effects of anions, the most corrosive to zinc being chloride in excess of 50 mg/L. The softer the water, the lower it is in carbonate, which means a more pronounced chloride content. Conversely, the harder the water the greater it is in carbonate and the corrosiveness of the chlorides are minimized. Therefore, the general rule is that the corrosion rate of soft water is higher than hard water.
Seawater
Seawater is high in salt content in the form of various chlorides. Typical surface seawater has a pH of 8 due to excess amounts of carbonates. The pH may fall to 7 in stagnant waters. The depth of the water also plays a part in the pH level. The pH decreases with depth. Corrosion of zinc is best controlled in the pH range of 5.5 to 12.
Seawater temperature can vary widely from 28 F (-2 C) at the poles to (95 F) 35 C near the equator. The higher the temperature the greater the dissolution of zinc in water. Tropical seawater (higher temperatures) yields higher corrosion rates, especially in polluted waters.
Potable Water
In the mid-1980s Congress passed the Clean Water Act, which includes the Drinking Water Standard. This standard requires that any material or coating that comes in contact with drinking water must be tested. The EPA contracted the National Sanitation Foundation (NSF) to write the test procedure, which after many drafts and public meetings, was finally published as NSF Standard 61: “Drinking Water Systems Components: Health Effects.” Therefore, only galvanizers that have submitted test coupons of their galvanized steel and have been approved by the NSF have the authority to galvanize steel for use with potable water. Despite the great lengths that a galvanizer must endure to gain this certification, hot-dip galvanized steel is a very suitable application for potable water.
Tidal Zones & Water Agitation
Tidal zones and fluid agitation are also important considerations in determining the corrosion protection delivered by galvanized steel. Often this motion of “washing” the carbonates off the zinc surface and not allowing them to form a protective film, along with zinc erosion, can be the cause for accelerated corrosion of zinc coatings.
Related References:
1. About Zinc
2. About Hot-Dip Galvanizing
3. HDG Hot-Dip Galvanizing Last Time
4. Cost of Galvanized Steel
5. Selection of Zinc Coatings
6. Zinc Coatings-Galvanized|Electrogalvanized|Galvanneal|Galfan
7. Physical Properties of HDG Hot-Dip Galvanized
8. HDG Hot-Dip Galvanized Abrasion Resistance Resistance to Mechanical Damage
9. Hot-Dip Galvanized Corrosion Protection and the Zinc Patina
10. HDG Hot-Dip Galvanized High Temperature Exposure
11. HDG Hot-Dip Galvanized Surface Reflectivity
12. HDG Hot Dip Galvanized Coating Structure
13. HDG Hot Dip Galvanized Bond Strength
14. HDG Hot Dip Galvanized Coating Uniformity
15. HDG Hot Dip Galvanized Coating Thickness
16. Powder Coating Hot Dipped Galvanized Steel
17. Painting Hot-Dippped Galvanized Steel
18. Painting Hot-Dipped Galvanized Steel Surface Preparation
19. Surface Coatings for Corrosion
20. Hot-Dip Galvanizing Surface Preparation
21. Hot-Dip Galvanizing Galvanizing
22. Hot-Dip Galvanizing Inspection
23. Characteristics of Zinc
24. Hot-Dip Galvanizing Performance in Atmosphere
25. Hot-Dip Galvanizing in Atmosphere Time to First Maintenance
26. Hot-Dip Galvanizing Performance in Soil
27. Soil Corrosion Data for Corrugated Steel Pipe
28. Hot-Dip Galvanizing Performance in Water
29. Cause of Zinc Corrosion
30. Corrosion of Zinc Coated Steel in Selected Natural Fresh Water
31. Corrosion of Zinc and Zinc Coated Steel in Sea Water
32. Corrosion of Zinc Coating in Industrial and Domestic Water
33. Concrete Corrosion of Hot Dip Galvanizing
34. Concrete corrosion resistance of hot dip galvanized reinforcing
35. Removal of Forms Concrete Corrosion
36. Zinc Reaction in Concrete Corrosion
37. Concrete Corrosion References
38. Hot-Dip Galvanizing Performance in Chemical Solutions
39.Hot-Dip Galvanizing Performance in Contact with Other Metals
40. Hot-Dip Galvanizing Performance in contact with Treated Wood
41. Hot-Dip Galvanizing Performance in contact with Food
42. Hot-Dip Galvanizing Performance in Extreme Temperature
|