Zhejiang Guanyu Stainless Steel Tube Co., Ltd  
  Directory | Useful Tool | Sitemap | Contact US | Home

         

Corrosion

Selection 316 304 303 Stainless Steel for Seawater Application






Type 316 stainless steel are used widely in marine application, but their corrosion resistance in contact with seawater is limited and they cannot be considered 'corrosion proof' under all situations. They are susceptible to localized attack mechanisms, principally crevice and pitting corrosion. This limits the scope for the use of these steels in seawater contact.

Type 304, and more especially the free machining 303 types, should not be considered suitable for seawater service. Sulphide inclusions outcropping on the surface of the 303 type are preferential pitting corrosion sites.

Factors governing the corrosion resistance of 316 types in seawater

The factors governing the corrosion resistance and hence suitability of the 316 types has been well documented by many workers in these fields of research.

These factors work together and include

    Water quality
    Flow rates
    Temperature
    Oxygen levels
    Cathodic protection



Seawater quality

The chloride levels can vary depending on the location and influence of tides. The levels encountered in even 'brackish' waters are above those where crevice corrosion can be expected to be a corrosion hazard. Intermittent exposure, for example in tidal zones, has been noted as less of a corrosion risk. This may be due to the fact that the steel surfaces are effectively 'washed' by the changes in water levels. Water evaporation effects could however increase the corrosion risks in splash zones, if the chlorides concentrate in a damp or wet environment.

It is important not to let seawater stand in contact with the steel unnecessarily. Horizontal 316 tube sections handling seawater have been noted to fail by pitting after only short periods.

Free draining surfaces and the avoidance of horizontal tube runs are important to the successful use of 316 in contact with seawater. If tubing systems are hydro-tested using seawater, this must be drained and flushed immediately after the test period. Failure to do this has resulted in corrosion to 316 systems.

Water flow rates

'High' flow rates are preferable (ie over 1 metre / second). Slow moving water can encourage biofouling, which can then result in shielding or crevice corrosion. Stagnant seawater conditions must be avoided. Increases in flow rates reduce the risk of corrosion and so applications such as pumps, can be successful applications for 316 types in seawater handling.

Water temperature

The crevice corrosion risk increases with temperature. Contact with heated seawater is not advisable. Ambient temperatures in northern European waters, as a guide, are around the maximum that a 316 should be expected to cope with, even if other conditions are favorable.

Stress corrosion cracking is not usually a concern in the temperatures that the 316 would be used at. (Higher temperatures would probably result in crevice and pitting corrosion anyway)

Water oxygen levels (deaeration)

Stainless steels rely on a source of oxygen to maintain their passive condition. Aerated seawater however can be more corrosive than de-aerated seawater.

It has been found that very low levels of oxygen, such as those found at sea depths of around 200 metres, make seawater less aggressive. This is associated with the slowing down of pitting corrosion rates.

Cathodic protection

Cathodic protection can be applied ie electrically or derived from contact with less 'noble' metals, including carbon steel and aluminium. Direct contact with these metals can help improve the resistance of the 316 types of stainless steel, at the expense of the other metal.

Although the stainless steel can benefit, there may be a concern that the overall durability of a fabrication involving such combinations could be compromised.

'Engineered' crevices (surface finish and post fabrication cleaning)

Crevice and the closely related pitting corrosion mechanisms are the forms of local attack that are normally responsible for the failure of the 316 types in seawater service.

Any form of crevices must be avoided.

These can occur through

    Design geometry (sharp corners or grooves)
    Flanged joints with gaskets

Intergranular corrosion has been detected on laboratory sensitized (heat-treated) 316 when subsequently exposure in seawater. The use of the low carbon 316L types such as grades 1.4404 or 1.4432 should avoid this additional corrosion risk in welded structures.

The surface finish weld quality and finishing of the steel can be important factors in the successful use of 316 types in seawater service applications.

These may be more important issues than factors such as the actual chloride concentration. Smooth, clean finishes and well-finished welded joints contribute to the corrosion resistance of the steel.

  Stainless Steel Tube/Pipe/Tubing, Nickel Alloy Tubing, Brass Alloy Tubing, Copper Nickel Pipe Material Grades


Related References:
Seawater Resistance of Stainless Steel Tubes
Seawater Corrosion Resistance and Antifouling Conclusions
Copper Nickel Seawater Corrosion Resistance and Antifouling
Selection of 316 304 and 303 Types of Stainless Steel for Seawater Application


TubingChina.com All Rights Reserved

Directory | Standard | Heat | Heat Exchanger | Temperature | Pressure | Corrosion | Hardness | Surface | Properties | Select Stainless Steel | Contact US

Useful Tools:

Stainless Steel Weight Calculator
Metals Weight Calculator
Nickel Alloy Weight Calculator
Copper Brass Alloy Weight Calculator
Copper Brass Alloy Sheet Plate Weight Calculator
Sheet Plate Weight Calculator
Hardness Conversion Calculator
Hardness Conversion Chart
Rockwell Brinell Vickers Shore Hardness Conversion Chart
Conversion Calculator
Length Weight Temperature Volume Pressure Calculater
Pipe Working Pressure Calculator
Pressure Conversion Converter
Round Bar Size Calculator
Gauge Sizes
Sheet Metal Gauge
Pipe Schedule
Nominal Pipe Size
ANSI Pipe Chart
Inch to mm Chart
Stainless Steel Pipe Sizes
Stainless Steel Tubing Sizes Chart
Stainless Steel L H Grade
Stainless Steel Density
Conversion of Stainless Steel
Nickel Alloy Grades Comparison Material Grade Chart Carbon Steel
Structural Steel Comparison Chart



Main Products:

BA Tube | AP Tube
Condenser Tubes Tubing
Stainless Steel Reheater Tube Superheater Tubes
Stainless Steel U bend Tube
Nickel Alloy U bend Tubes
Copper Alloy U Bend Tubes
Heat Exchanger Tube
Super Duplex Pipe
Nickel Alloy Tube
Brass Alloy Tubing
Copper Nickel Alloys Tubes
Stainless Steel Hollow Tube
Stainless Steel Oval Tubing
Stainless Steel Square Tubing
Stainless Steel Rectangular Tubing
Stainless Steel Capillary Tube
Duplex Stainless Steel Pipe
Seamless Stainless Steel Tubing
Corrugated Stainless Steel Tubing
Stainless Steel Twisted Tube
Polishing Stainless Steel Tubing
Stainless Steel Aircraft Tube
Stainless Steel Hydraulic Tubing
Stainless Steel Instrumentation Tubing
Stainless Steel Angle Iron Bar
Stainless Steel Mechanical Tube
Bright Annealing Stainless Tube
Heat resistant Stainless Steel
Stainless Steel Welded Pipe
Extruded Serrated Finned Tubes Integral Finned Tubes / Extruded Aluminum Finned Tubes
Brass Alloys Copper Nickel Alloy Integral Low Finned Tubes
HFW High Frequency Welded Helical Spiral Serrated Finned Tubes
Corrosion Resistant Stainless Steel
Corrosion Resistance Stainless Steel

Stainless Steel Tubing Pipe

304 Stainless Steel Pipe
304L Stainless Steel Pipe
304H Stainless Steel Pipe
304/304L Stainless Steel Tubing
309S Stainless Steel Pipe
310S Stainless Steel Pipe
316L Stainless Steel Tubing
316Ti Stainless Steel Tube
317L Stainless Steel Pipe
321 321H Stainless Steel
347 347H Stainless Steel
904L N08094 Seamless Tubes
17-4 PH 630 UNS S17400 Stainless Steel
253MA S30815 Stainless Steel Tube
S31254 254 SMO Pipe
S31803 Stainless Steel
2205 Duplex Pipe Tubing
S32101 Stainless Steel
S32304 Stainless Steel
2507 Super Duplex Pipe
S32750 Super Duplex Pipe
S32760 Super Duplex Steel
1.4462 Stainless Steel Pipe
ASTM A213 | ASTM A269
ASTM A312 | ASTM A511
ASTM A789 | ASTM A790
ASTM B161 / ASME SB 161 | ASTM B111
EN 10216-5
ASTM A789 ASME SA 789 S31803 S32205 S32101 S32750 S32760 S32304 S31500 S31260 Seamless Tubes
EN 10216-5 1.4462 1.4362 1.4162 1.4410 1.4501 Seamless Tubes
Nickel Alloy Tubing:

UNS N08020 Alloy 20 Tubing
UNS N02200 Alloy 200 Tube
UNS N02201 Alloy 201 Pipe
UNS N04400 Monel 400 Tubing
N06600 Inconel 600 Tube
N06601 Inconel 601 Tubing
N06625 Inconel 625 Tubes
N08800 Incoloy 800 Tube
N08810 Incoloy 800H Tube
N08811 Incoloy 800HT Tubing
UNS N08825 Incoloy 825 Pipe
ASTM B622 N10276 C276 Tubing
ASTM B622 N06022 Hastelloy C-22 Alloy Tubes
C28000 Brass Seamless Tubes C44300 Brass Seamless Tubes
C68700 Brass Seamless Tubes
C70600 Copper Nickel Tubes
C71500 Copper Nickel Tubes
DIN 2391 Seamless Precision Steel Tubes
EN 10305-1 E215 E235 E355 Seamless Precision Steel Tube Tubing Tubes
DIN 2393 St28 St34.2 St37.2 St44.2 St52.3 Welded Precision Steel Tubes
EN 10305-2 E195 E235 E355 Welded Cold Drawn Precision Steel Tube