S32205 S31803 1.4462 Structure
The chemical analysis of 2205 is optimized to obtain a typical 50 a/ 50 g microstructure after solution annealing treatment at 1900°/1922°F (1040°/1080°C).
Heat treatments performed above 2000°F may result in an increase of ferrite content.
Like all duplex stainless steels, 2205 is susceptible to precipitation of intermetallic phases, usually referred to as sigma phase. Intermetallic phases precipitate in the range of 1300°F to 1800°F, with the most rapid precipitation occurring at about 1600°F. Thus, it is prudent to have 2205 pass a test for the absence of intermetallic phases, such as those in ASTM A789.
S31803 Stainless Steel Pipe
General Properties
Application
Standards
Chemical Composition
Resistance to Corrosion
Physical Properties
Mechanical Properties
Structure
Welding
Processing
Machinability
1. Duplex Stainless Steel Pipe
2. Duplex Stainless Steel
3. Super-Duplex Stainless Steel
4. Principle of Duplex Stainless Steel
5. How the Austenite Ferrite Balance Achieved
6. Corrosion Resistance of Duplex Stainless Steel
7. Stress Corrosion Cracking SCC of Duplex Stainless Steel
8. Barrier to Using Duplex Stainless Steel
9. Duplex Stainless Steel Grades Comparison Table
10. S32101 | S31803 | S32205 | S32304 | S32750 | S32760
11. ASTM A789/A789M
12. ASTM A 790/A 790M
13. Duplex Stainless Steel Pipe
14. Austenitic-Ferritic Stainless Steel Pipe
15. Super-Duplex Stainless Steels and their characteristics
16. 2507 S32750 Duplex Steel Pipe
17. S31803 Stainless Steel Pipe
18. S32304(1.4362) Duplex Steel
19. S32205 Stainless Steel Pipe
20. 1.4462 Stainless Steel Pipe
21. Use of stainless steel under high temperature condition refer table
22. ASTM A789 S31803 Duplex Stainless Steel Pipe
23. ASTM A789 S32205 Duplex Stainless Steel Pipe
24. Duplex Stainless Steel Pipe Specification
25. ASTM A789 vs ASTM A790
|