Zhejiang Guanyu Stainless Steel Tube Co., Ltd  
  Directory | Useful Tool | Sitemap | Contact US | Home

         

Heat Exchanger

Stainless Steel Tubing and Copper Alloy Tubing in Heat Exchanger





According to NORA study, one of the keys to maximize fuel performance is characterizing oil sludge and determining its possible contribution. Deposits found in copper tubing consisted of oxidized fuel. The clogging of copper fuel lines was one of the problems discovered, as the study found solid black particles that adhered to tube surface. Cooper has also been known to accelerate fuel-degradation process, forming particulates.

On the other hand, far fewer solid and gum were produced by fuel when exposed to steel and stainless steel. The reports recommend using steel piping materials wherever it is feasible.” This phenomenon is taken in account for heat transfer calculations. TEMA (Standards of the Tubular Exchanger Manufacturers Association) determines Chemical Reaction Corrosion “… Coking, the hard crust deposit of hydrocarbons formed on heat transfer surfaces, is a common form of this type of fouling.” We can not recommend any means to remove this deposit from the tubing.

The high thermal conductivity of copper can not compensate poor thermal conductivity of  organic solid black particles resulting in decrease of heat transfer. Table 1 demonstrates the effect of fouling on thermal resistance of copper and stainless steel tubes with wall thickness of 0.049”.

These calculations show that thermal resistance of stainless steel pipe in the fuel oil preheater will be less then thermal resistance of copper tubes, accumulated coked hard crust deposit of hydrocarbons. The thermal resistance of the tubing is only a part of total resistance of heat transfer, and the effect of fouling and tubing material can be accurately calculated in the process of the thermal design of a heat exchanger.

  Copper Stainless Steel
k- Btu/(hr ft deg. F) 225.00 8.4
t/k - (hr sq. ft deg. F)/Btu 0.0000181 0.0004861
Fouling  0.005 0.005   (per TEMA)
Total 0.0050181 0.0054861
Per Cent 100% 109.3%

Where: t/k-Thermal Resistance of the tubes, t-wall thickness, k- coefficient of thermal conductivity.

Regretfully, TEMA Recommended Good Practice values of Fouling Resistances for Industrial Liquids do not take in consideration effect of tube material.

If the actual Fouling Resistance of # 6 Fuel Oil in the heater made from stainless steel tubing equals to 0.0025, then:

Fouling 0.005 0.0025
Total 0.0050181 0.0029861
Per Cent 100%    40%

The coking of hydrocarbons accelerated at elevated temperature of heating tubes. The evaporation of light hydrocarbon residue fractions definitely accelerates coking.

As a good practice, The Alstrom Corporation recommends to maintain the temperature of heating media about 120 deg. F above the outgoing temperature of the #6 heating oil or less.

For instance, 

#6 Fuel Oil Outgoing Temperature, deg.F Recommended Temperature of Heating Media, deg.F Maximal Steam Pressure, psig
120 240 10
150 270 30
180 300 50
220 340 100
250 370 150

The excessive steam pressure can be used to size temperature regulator.

These recommendations are valid for asphalt and other highly viscous liquids. For instance, heating syrups may result in carmelization of the fluid.

Similar, but in less degree, phenomena occurs in shell & tube heat exchangers for water heating. Indeed, copper tubes are oxidized, resulting in fast accumulation of solid deposits.

Copper has poor mechanical properties, particularly on elevated temperatures common in heat transfer. 

Tube-to-tube sheet joint of copper tubes with other materials commonly made by tube expansion. ASME Boiler & Pressure Vessel Code estimates efficiency if expanded joint 60-65%. Stainless steel tubes can be not only expanded but also seal welded to the tubesheet, resulting in 100% joint efficiency.  In this case, according to the Standard for Power Plant Heat Exchangers of Heat Exchange Institute, the metal temperature of welded joint can reach the maximum value permitted by ASME Code.

After introducing 316 stainless steel tubes as a standard material of fabrication shell & tube heat exchangers and using expansion-welding technology The Alstrom Corporation was never reported about tube damage or leak in the tube-to-tubesheet joint.

Material Designation Corresponding Material Symbol
GB/T8890 ASTM B111 BS2871 JIS H3300 DIN1785
Copper-Nickel BFe10-1-1 C70600 CN102 C7060 CuNi10Fe1Mn
BFe30-1-1 C71500 CN107 C7150 CuNi30Mn1Fe
(BFe30-2-2) C71640 CN108 C7164 CuNi30Fe2Mn2
(BFe5-1.5-0.5) C70400
B7
Aluminium Brass HAL77-2 C68700 CZ110 C6870 CuZn20Al2
Admiralty Brass HSn70-1 C44300 CZ111 C4430 CuZn28Sn1
Boric Brass Hsn70-18
HSn70-1 AB
Arsenical Brass H68A CZ126
Brass Tubes H65/H63 C28000/C27200 CZ108 C2800/C2700 CuZn36/CuZn37



Stainless Steel Tubing, Nickel Alloy Tubing, Brass Alloy Tubing, Copper Nickel Pipe Material Grades


Related References:
  • Heat Exchanger
  • U bend Stainless Steel Tube for Heat Exchanger
  • Heat Exchanger Tube
  • Specification/Standards for Heat Exchanger Tubes
  • Finned Tube and Pipe Heat Exchangers
  • Shell Tube and Pipe Heat Exchangers
  • Select Materials for Heat Exchanger Tubes with Substantial Pressure difference
  • The difference between Stainless Steel Tubing and Copper Tubing in Shell and Tube Heat Exchanger
  • Difference in Counter and Parallel Flow Heat Exchanger
  • Aluminum Corrosion Resistance for Cold Plates and Plate-Fin Heat Exchangers
  • Flow arrangement
  • Heat exchangers - Tubes and Pipes Standards
  • Selecting a Heat Exchanger Cooling Liquid
  • Selecting a Heat Exchanger Cooling Air
  • Selecting A Cold Plate Technology
  • Selecting a Cooling System: Ambient Cooling System | Recirculating Chiller | Liquid-to-Liquid Cooling System | Recirculating Chiller or Liquid-to-Liquid Cooling System
  • Selecting A Cold Plate Technology
  • Selecting A Pump
  • Selecting a Recirculating Chiller
  • Selecting A Modular Cooling System
  • Selecting an Liquid-to-Liquid Cooling System
  • How to Boost the Efficiency of Heat Exchanger
  • Comparison of Heat Exchanger Types
  • Parallel and Counter Flow Design
  • Direct contact heat exchanger


  • Types of heat exchangers
    Shell and tube heat exchanger
    Plate Heat Exchanger - Efficiency and Flexibility
    U Tube heat exchanger
    Regenerative heat exchanger
    Adiabatic wheel heat exchanger
    Plate fin heat exchanger
    Fluid heat exchangers
    Phase-change heat exchanger
    Parallel Flow Heat Exchanger
    Counter Flow Heat Exchanger
    Cross Flow Heat Exchanger
    Spiral heat exchangers
    Shell and Coil Heat Exchangers
    Brazed Heat Exchangers - Advantages | Applications | Specifications
    Titanium Heat Exchanger
    Plate and Shell Heat Exchanger - Applications | Specification
    Block Welded Heat Exchanger - Applications | Specification


  • Construction
  • Self cleaning
  • Applications
  • Selection
  • Pre Heater
  • Radiator
  • Air Conditioner Evaporator and Condenser
  • Large Steam System Condensers


  • TubingChina.com All Rights Reserved

    Directory | Standard | Heat | Heat Exchanger | Temperature | Pressure | Corrosion | Hardness | Surface | Properties | Select Stainless Steel | Contact US

    Useful Tools:

    Stainless Steel Weight Calculator
    Metals Weight Calculator
    Nickel Alloy Weight Calculator
    Copper Brass Alloy Weight Calculator
    Copper Brass Alloy Sheet Plate Weight Calculator
    Sheet Plate Weight Calculator
    Hardness Conversion Calculator
    Hardness Conversion Chart
    Rockwell Brinell Vickers Shore Hardness Conversion Chart
    Conversion Calculator
    Length Weight Temperature Volume Pressure Calculater
    Pipe Working Pressure Calculator
    Pressure Conversion Converter
    Round Bar Size Calculator
    Gauge Sizes
    Sheet Metal Gauge
    Pipe Schedule
    Nominal Pipe Size
    ANSI Pipe Chart
    Inch to mm Chart
    Stainless Steel Pipe Sizes
    Stainless Steel Tubing Sizes Chart
    Stainless Steel L H Grade
    Stainless Steel Density
    Conversion of Stainless Steel
    Nickel Alloy Grades Comparison Material Grade Chart Carbon Steel
    Structural Steel Comparison Chart



    Main Products:

    BA Tube | AP Tube
    Condenser Tubes Tubing
    Stainless Steel Reheater Tube Superheater Tubes
    Stainless Steel U bend Tube
    Nickel Alloy U bend Tubes
    Copper Alloy U Bend Tubes
    Heat Exchanger Tube
    Super Duplex Pipe
    Nickel Alloy Tube
    Brass Alloy Tubing
    Copper Nickel Alloys Tubes
    Stainless Steel Hollow Tube
    Stainless Steel Oval Tubing
    Stainless Steel Square Tubing
    Stainless Steel Rectangular Tubing
    Stainless Steel Capillary Tube
    Duplex Stainless Steel Pipe
    Seamless Stainless Steel Tubing
    Corrugated Stainless Steel Tubing
    Stainless Steel Twisted Tube
    Polishing Stainless Steel Tubing
    Stainless Steel Aircraft Tube
    Stainless Steel Hydraulic Tubing
    Stainless Steel Instrumentation Tubing
    Stainless Steel Angle Iron Bar
    Stainless Steel Mechanical Tube
    Bright Annealing Stainless Tube
    Heat resistant Stainless Steel
    Stainless Steel Welded Pipe
    Extruded Serrated Finned Tubes Integral Finned Tubes / Extruded Aluminum Finned Tubes
    Brass Alloys Copper Nickel Alloy Integral Low Finned Tubes
    HFW High Frequency Welded Helical Spiral Serrated Finned Tubes
    Corrosion Resistant Stainless Steel
    Corrosion Resistance Stainless Steel

    Stainless Steel Tubing Pipe

    304 Stainless Steel Pipe
    304L Stainless Steel Pipe
    304H Stainless Steel Pipe
    304/304L Stainless Steel Tubing
    309S Stainless Steel Pipe
    310S Stainless Steel Pipe
    316L Stainless Steel Tubing
    316Ti Stainless Steel Tube
    317L Stainless Steel Pipe
    321 321H Stainless Steel
    347 347H Stainless Steel
    904L N08094 Seamless Tubes
    17-4 PH 630 UNS S17400 Stainless Steel
    253MA S30815 Stainless Steel Tube
    S31254 254 SMO Pipe
    S31803 Stainless Steel
    2205 Duplex Pipe Tubing
    S32101 Stainless Steel
    S32304 Stainless Steel
    2507 Super Duplex Pipe
    S32750 Super Duplex Pipe
    S32760 Super Duplex Steel
    1.4462 Stainless Steel Pipe
    ASTM A213 | ASTM A269
    ASTM A312 | ASTM A511
    ASTM A789 | ASTM A790
    ASTM B161 / ASME SB 161 | ASTM B111
    EN 10216-5
    ASTM A789 ASME SA 789 S31803 S32205 S32101 S32750 S32760 S32304 S31500 S31260 Seamless Tubes
    EN 10216-5 1.4462 1.4362 1.4162 1.4410 1.4501 Seamless Tubes
    Nickel Alloy Tubing:

    UNS N08020 Alloy 20 Tubing
    UNS N02200 Alloy 200 Tube
    UNS N02201 Alloy 201 Pipe
    UNS N04400 Monel 400 Tubing
    N06600 Inconel 600 Tube
    N06601 Inconel 601 Tubing
    N06625 Inconel 625 Tubes
    N08800 Incoloy 800 Tube
    N08810 Incoloy 800H Tube
    N08811 Incoloy 800HT Tubing
    UNS N08825 Incoloy 825 Pipe
    ASTM B622 N10276 C276 Tubing
    ASTM B622 N06022 Hastelloy C-22 Alloy Tubes
    C28000 Brass Seamless Tubes C44300 Brass Seamless Tubes
    C68700 Brass Seamless Tubes
    C70600 Copper Nickel Tubes
    C71500 Copper Nickel Tubes
    DIN 2391 Seamless Precision Steel Tubes
    EN 10305-1 E215 E235 E355 Seamless Precision Steel Tube Tubing Tubes
    DIN 2393 St28 St34.2 St37.2 St44.2 St52.3 Welded Precision Steel Tubes
    EN 10305-2 E195 E235 E355 Welded Cold Drawn Precision Steel Tube